
Optimizing Near-Data Processing for Spark
Sri Pramodh Rachuri, Arun Gantasala, Prajeeth Emanuel, Anshul Gandhi

Stony Brook University

Robert Foley, Peter Puhov Theodoros Gkountouvas, Hui Lei
FutureWei OpenInfra Labs

1srachuri@cs.stonybrook.edu

Overview

2

● General Purpose Servers
○ CPU, Memory, Storage

○ Inefficient utilization

○ Fragmentation of resources

Overview

2

● General Purpose Servers
○ CPU, Memory, Storage

○ Inefficient utilization

○ Fragmentation of resources

● Disaggregated infrastructure (DI)
○ Optimized for specific resource

○ Reduces amount of unused resources

○ Easy rolling upgrades

○ High dependence on networks

■ Potential performance bottleneck

Overview

3

LAN/WAN

LAN LAN

Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN

Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN

● Storage Optimized Cluster

○ High storage space

○ Low computation resources

Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN

● Storage Optimized Cluster

○ High storage space

○ Low computation resources

● Connected over network

○ Large datasize => high transfer

time

Overview

3

● Compute Optimized Cluster
○ High computation resources

○ Low storage space

LAN/WAN

LAN LAN

● Storage Optimized Cluster

○ High storage space

○ Low computation resources

● Connected over network

○ Large datasize => high transfer

time

Motivation - NDP

4

LAN/WAN

Motivation - NDP

4

LAN/WAN

Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

LAN/WAN

Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size

LAN/WAN

Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size

LAN/WAN

Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size

LAN/WAN

How to implement NDP?

Motivation - NDP

4

Example

Calculating total sales of a store in 1994 using

records of size 1 TB from 1990 to 2020.

● Filter by year : ~30x Reduction : 34 GB

● Drop columns : 5-10x Reduction : 4-7 GB

● Sum rows : Returns int : 8 B

Near Data Processing (NDP)

● Processing in storage cluster - “Pushdown”

● Reduction in transfer size
Processing at resource constrained devices:

Can they handle the pushdown?

LAN/WAN

How to implement NDP?

How to implement and optimize
NDP pushdown?

5

Background

6

Spark and HDFS without NDP

Executor

. . .

Spark Master

P1 P2 Partition Pn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Collecting Results

Transfer of

data

Filter

Aggregate

HDFS

Namenode
Fetching details

of datanode

HDFS Datanode

Transfer of

data

Project

Background

7

Spark and HDFS with NDP

● Operations pushed to

datanodes

Executor

. . .

Spark Master

P1 P2 Partition Pn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Collecting Results

Transfer of

data

HDFS

Namenode
Fetching details

of datanode

HDFS Datanode

Filter

Aggregate

Project

Transfer of

data

Background

7

Spark and HDFS with NDP

● Operations pushed to

datanodes

Executor

. . .

Spark Master

P1 P2 Partition Pn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Collecting Results

Transfer of

data

HDFS

Namenode
Fetching details

of datanode

HDFS Datanode

Filter

Aggregate

Project

Transfer of

data

Background

8

Selective Pushdown

● Some operations pushed

to datanodes

Executor

. . .

Spark Master

P1 P2 Partition Pn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Collecting Results

HDFS

Namenode
Fetching details

of datanode

HDFS Datanode

Filter

Project

Aggregate

Transfer of

dataTransfer of

data

Background

8

Selective Pushdown

● Some operations pushed

to datanodes

Executor

. . .

Spark Master

P1 P2 Partition Pn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Collecting Results

HDFS

Namenode
Fetching details

of datanode

HDFS Datanode

Filter

Project

Aggregate

Transfer of

data

Background

8

Selective Pushdown

● Some operations pushed

to datanodes

Executor

. . .

Spark Master

P1 P2 Partition Pn

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Collecting Results

HDFS

Namenode
Fetching details

of datanode

HDFS Datanode

Filter

Project

Aggregate

Which operations to Pushdown?

Transfer of

data

Prior Work

NDP implementations

● Octopus [CloudCom’15]

● PushdownDB [ICDE’2020]

● λFlow [CCGRID’2019]

9More related works and detailed comparisions can be found in the paper

Prior Work

NDP implementations

● Octopus [CloudCom’15]

● PushdownDB [ICDE’2020]

● λFlow [CCGRID’2019]

9

We aim to study performance of NDP in

λFlow-like systems and then optimize it

More related works and detailed comparisions can be found in the paper

System Design

10

Compute Node Storage Node

System Design

10

Compute Node Storage Node

NDP Datasource API

● Spark driver for NDP

Client

● Post processing of

results

System Design

10

Compute Node Storage Node

NDP Client

● Extracts attributes

required for NDP

● Translates query into

SQL command

System Design

11

Compute Node Storage Node

System Design

11

Compute Node Storage Node

System Design

11

Compute Node Storage Node

REST API Handler

● Intercepts HTTP connections

from executors to datanodes

● Starts HDFS and SQLite

subprocesses

System Design

11

Compute Node Storage Node

SQLite Engine

● Parses CSV files to create

tables

● Run operations that are

pushdowned

System Design

11

Compute Node Storage Node

SQLite Streamer

● Enables processing while

loading data

System Design

11

Compute Node Storage Node

SQLite Streamer

● Enables processing while

loading data

System Design

11

Compute Node Storage Node

SQLite Streamer

● Enables processing while

loading data

More details in the paper

Code published at - https://github.com/open-infrastructure-labs/caerus-dike/

https://github.com/open-infrastructure-labs/caerus-dike/

Which operations to
Pushdown?

12

System Design

13

System Design

Analytical model - “Net-Aware”

● Predict the best pushdown

strategy for an operation

● Using the parameters

1. Estimated execution time

of operations

■ At Spark

■ At HDFS

2. Estimated time to transfer

■ Input data

■ Output data

13

System Design

Analytical model - “Net-Aware”

● Predict the best pushdown

strategy for an operation

● Using the parameters

1. Estimated execution time

of operations

■ At Spark

■ At HDFS

2. Estimated time to transfer

■ Input data

■ Output data

NDP of an operation is useful if time taken for

Transfer input (HDFS → Spark) + Compute at Spark

> Compute at HDFS + Transfer output (HDFS → Spark)

13

QuerySystem Design
● NDP decision for a particular

operation

● Decide # of operations to pushdown
while initializing (design constraints)

● Once in Spark need to continue in

Spark (design constraints)

Start at

Operation k=1

Is

Condition == True

For operation k?

Operations ≥k in Spark Cluster

Operations <k in HDFS Cluster

No

Yes

k = k+1

14

Filter

Project

Aggregate

k = 1

k = 2

k = 3

Evaluation - Experimental Results
● 6 Spark nodes

○ Total 70 cores for executors

○ Total 17.5 GB memory for

executors

○ TPC-H Queries

● 10 Gbps between the clusters

● 1 Gbps per host

● 4 Datanodes (HDFS)

○ 1-4 cores each

■ Using Docker

○ CPU Freq - 2.67 GHz (original)

1.6 GHz (underclock)

■ Using cpufrequtils

○ Replication factor - 4

○ 100 GB dataset by DBGEN

● 1 Gbps per host

○ Changed using Tc and NetEm

15More details in the paper

Evaluation -
Experimental Results

16

● 1 Job at a time

● Varying cores in

datanodes

● Oracle is the best of all

selective pushdowns

● Net-aware is our policy

● No pushdown is native

spark without NDP

● λFlow is full pushdown

Evaluation -
Experimental Results

16

● 1 Job at a time

● Varying cores in

datanodes

● Oracle is the best of all

selective pushdowns

● Net-aware is our policy

● No pushdown is native

spark without NDP

● λFlow is full pushdown

Evaluation -
Experimental Results

16

● 1 Job at a time

● Varying cores in

datanodes

● Oracle is the best of all

selective pushdowns

● Net-aware is our policy

● No pushdown is native

spark without NDP

● λFlow is full pushdown

Evaluation -
Experimental Results

16

● 1 Job at a time

● Varying cores in

datanodes

● Oracle is the best of all

selective pushdowns

● Net-aware is our policy

● No pushdown is native

spark without NDP

● λFlow is full pushdown

Full pushdown is not useful

with weaker storage

Evaluation -
Experimental Results

16

● 1 Job at a time

● Varying cores in

datanodes

● Oracle is the best of all

selective pushdowns

● Net-aware is our policy

● No pushdown is native

spark without NDP

● λFlow is full pushdown

Full pushdown is not useful

with weaker storage

Gets better with more cores

Evaluation -
Experimental Results

16

● 1 Job at a time

● Varying cores in

datanodes

● Oracle is the best of all

selective pushdowns

● Net-aware is our policy

● No pushdown is native

spark without NDP

● λFlow is full pushdown

Full pushdown is not useful

with weaker storage

Net-Aware is always close to

oracle

Gets better with more cores

Evaluation -
Experimental Results

17

● Changed bandwidth

between clusters

Evaluation -
Experimental Results

17

● Changed bandwidth

between clusters

Evaluation -
Experimental Results

17

Full pushdown is now useful

with weaker storage because

of the weak network link

● Changed bandwidth

between clusters

Evaluation -
Experimental Results

17

Full pushdown is now useful

with weaker storage because

of the weak network link

Net-Aware is always close to

oracle

● Changed bandwidth

between clusters

● Fewer nodes in HDFS and

moderate bandwidth

Evaluation -
Experimental Results

18

● Fewer nodes in HDFS and

moderate bandwidth

Evaluation -
Experimental Results

18

A better selective pushdown

exists than Full pushdown

and No pushdown

● Fewer nodes in HDFS and

moderate bandwidth

Evaluation -
Experimental Results

18

A better selective pushdown

exists than Full pushdown

and No pushdown

● Fewer nodes in HDFS and

moderate bandwidth

Evaluation -
Experimental Results

18

Net-Aware is always close to

oracle

A better selective pushdown

exists than Full pushdown

and No pushdown

Evaluation - Experimental Results
● 1 job arrives every 50 seconds

● Averaged over 10 jobs

19
More experimental results and simulations in the paper

Evaluation - Experimental Results
● 1 job arrives every 50 seconds

● Averaged over 10 jobs

19

Selective pushdown can

make significant difference

More experimental results and simulations in the paper

Evaluation - Experimental Results
● 1 job arrives every 50 seconds

● Averaged over 10 jobs

19

Net-Aware is always close to

optimal

Selective pushdown can

make significant difference

More experimental results and simulations in the paper

Conclusion

Summary of our paper

● NDP implementation

● Constructed an analytical

model for optimizing NDP

● Experimental evaluation –

Net-Aware is close to optimal

● Implemented a discrete event

simulator for large clusters
(skipped in the interest of time)

20

Thanks for your
attention

Summary-

● NDP for Spark+HDFS

● Analytical Model

● Experimental evaluation

● Discrete event simulator

21

Any Questions?

