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ABSTRACT
Live video analytics have become a key technology to support
surveillance, security, traffic control, and even consumer multime-
dia applications in real time. The continuous growth in number of
networked video cameras will further increase their widespread
adoption. Yet, until now, developments in video analytics have
largely focused on using fixed cameras, omitting the ever-growing
presence of mobile cameras such as car dash-cams, drones, and
smartphones. Edge computing, coupled with centralized clouds,
has helped alleviate the network traffic and processing load, reduc-
ing latency and data transmissions. However, the current approach
of processing video feeds through a hierarchy of clusters across a
somewhat predictable path in the network will not be sufficient
to support the integration of mobile feeds into the video analytics
architecture. In this paper, we argue that a crucial step towards
supporting heterogeneous camera sources is the adoption of a flat
edge computing architecture. Such architecture should enable the
dynamic distribution of processing loads through distributed com-
puting points of presence, rapidly adapting to sudden changes
in traffic conditions. In support of this hypothesis, we present ex-
ploratory results that show that smartly distributing and processing
vision modules in parallel across available edge compute nodes can
ultimately lead to better resource utilization and improved perfor-
mance.

CCS CONCEPTS
•Computer systems organization→Distributed architectures;
Pipeline computing; •Computingmethodologies→Computer
vision problems; Object detection.
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1 INTRODUCTION
Extracting information from cameras is increasingly becoming
vital across a number of applications. For example, cities have
been deploying a large number of closed-circuit cameras that are
used for safety, security, and traffic control applications. The police
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Figure 1: Distributions of processing blocks across different
networks

department of New York City uses over 18 thousand cameras spread
all over the city [10]. Similarly, some estimates suggest that there
are about 691 thousand cameras in the city of London [11]. Live
video analytics solutions [1] rely on distributed cloud resources
to implement pipelines of operations that process incoming video
frames to progressively extract relevant information.

Until now, advances in video analytics have largely focused on
fixed cameras, particularly in the domain of traffic surveillance,
that observe the same scene during their lifetime (e.g., [4, 6, 15]).
Analytics architectures process video streams from these cameras
through a hierarchy of clusters and a somewhat predictable path in
the network. Often, the edge node in these clusters is the camera,
with some compute abilities, connected via a wired link to the
next cluster in the hierarchy. They are part of an organized and
well-understood deployment that provides a lot of control knobs
at each tier within the defined hierarchy. Yet, with the easier-than-
ever access to and rising penetration of mobile cameras, standard
video analytics architectures should adapt to incorporate their video
feeds. These cameras, mounted on devices such as smartphones,
dashboard cameras, and drones, often offer the unique advantage of
being in the right place at the right time. However, in the absence of
real-time support for gathering analytics from them, we are missing
an opportunity for truly pervasive intelligent analytics.

Edge computing frameworks are rapidly evolving to include pro-
cessing accelerators—i.e., GPUs [12] and TPUs [13]—at the extreme
edge of the network. Such solutions aim to offer an extremely scal-
able approach to support low latency computation services through
a pervasive deployment approach. Unfortunately, these architec-
tures are inherently underpowered and relying on them to support
video analytics requires to carefully decide how to distribute the
processing load. This becomes particularly challenging when pro-
cessing videos generated by mobile cameras as incoming traffic
loads can rapidly shift over time.
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In this paper, we argue that, to move to the next step in live video
analytics and support mobile video sources, compute architectures
should maximize how they distribute their processing pipelines.
Taking advantage of ultra localized computing nodes, orchestrators
gain the ability to split processing pipelines not only hierarchi-
cally but horizontally too. As shown in Figure 1, multiple levels
of distribution are possible, depending on the nodes’ geographical
distribution, leading to wonder how different deployment strategies
could affect the application’s performance.

To support our hypothesis and answer the aforementioned ques-
tion, we explore how distributing vision functions across networks
impacts the performance of video analytics pipelines. We imple-
ment two sample applications in the context of traffic control: vol-
ume monitoring and car color detection (for responding to amber
alerts). We deploy these applications using three different deploy-
ment strategies: 1) A fully centralized solution that uses a single
node for the entire processing; 2) A fully distributed solution that
instantiates pipeline functions across multiple network regions;
Finally, 3) a distributed solution that attempts to smartly select
how to partition the pipeline based on each step performance. Our
results suggest that smartly distributing the functions is an efficient
way to utilize the resources at the edge.

The rest of the paper is structured as follows: Section 2 discusses
related work. Section 3 introduces our system design guidelines.
Section 4 presents the experimental platform we use to deploy the
two sample applications. Section 5 presents the obtained experi-
mental results. Finally, Section 6 concludes the paper.

2 RELATEDWORK
In recent years, video analytics have become a key to supporting
surveillance, security, traffic control, and multimedia use cases with
processing at the edge of the network [1]. Different solutions have
been proposed to support dynamic extraction of useful information
from live camera feeds.

Microsoft Rocket [2] is a platform for performing live video ana-
lytics. It creates a pipeline for the processing of video frames with
pluggable models. It also offers a method to offload the computa-
tionally heavy ML-based processing to the Azure cloud. Building
on this platform, Spatula [4] uses temporal and spatial correlations
between video streams from large camera networks to create a
cross-camera analytics platform. It uses a pre-learnt model of cross-
camera correlations to reduce the time taken for spatio-temporal
search among the video streams. Similarly, Chameleon [6] adapts
its video pipeline parameters like the NN-model to the current
scene of a video stream to find the best balance between accuracy
and speed. The authors show that systems can perform adaptation
using cross-camera inference to reduce the cost of adaptation. JCAB
[15] proposes an online algorithm that uses Lyapunov optimization
and Markov approximation to jointly optimize the configuration
and bandwidth allocation to the edge nodes. It optimizes based
on network conditions, energy utilization, processing latency, and
video scene.

Hetero-Edge [16] first proposed an architecture that distributes
computing tasks across nodes exploiting the inherent parallelism of
tasks belonging to the analytics pipelines. The authors created a plat-
form for computer vision for edge computing using Apache Storm.

The platform divides input tasks among slave nodes using the task’s
Directed Acyclic Graph (DAG). Further, they propose a scheduler
that can make parts of frames independently processed by differ-
ent slave nodes concurrently in favourable conditions. VideoEdge
[3] proposes an optimization framework to determine the video
resolution of the stream and placement of functions in different
clusters. However, VideoEdge proposes a hierarchical distribution
only, which does not adapt to the dynamic needs of mobile cam-
eras. Handling mobility becomes relevant when integrating mobile
devices in the processing pipeline. Follow Me at Edge [9] uses Lya-
punov optimization and Markov approximation to tackle the task
migration due to mobility problem in edge computing. It proposed
a scheme that can be employed by nodes in the distributed system.

Our work aims to build on the insights presented in previous
solutions to further push video analytics architectures towards
exploiting all available resources to better address the challenges
introduced by the integration of mobile cameras into the video
analytics pipeline. We investigate the impact that horizontal distri-
bution can have on resource consumption.

3 SYSTEM DESIGN
The overall objective of our exploration is to investigate a dynamic
distribution of processing load. To this end, we identify three design
characteristics: (1) Split-process execution, (2) Improved latency
and resource utilization, and (3) Adaptability. We discuss these
characteristics and how our implementation aims to achieve these.
Split-process execution.We adopt a split-process execution for
functions in video analytics pipelines. Each pipeline consists of
functions that are processed sequentially. To support applications
such as vehicle recognition and counting on incoming video frames,
the application pipeline includes decoding, object detection, crop-
ping, and counter increments. This is only one of several ways in
which a counting pipeline can be implemented. We make these
subtasks independently processable by splitting them into separate
blocks. Every block can independently work as a microservice and
can have multiple inputs and outputs. For example, in Figure 2, a
cropping function can receive video frames and bounding boxes
of cars from different blocks and process them to output cropped
images of cars. The video frames that the cropping block receives
need to be cached the memory till it receives the bounding box posi-
tion (from, say, an object detection block). Although cropping is not
computationally intensive, it can very much affect the overall time
taken by the pipeline and its accuracy, if not strategically placed in
the network. Our primary motivation in performing split-process
execution is to enable on-demand application pipeline construction
for mobile cameras. Depending on where the processing is required
in the network and the application to be supported, more blocks can
be designed and integrated into the system. Example applications
and their constituent modules are described in Section 4.
Improved latency and resource utilization. A primary objec-
tive in breaking apart vision pipelines and distributing them over a
flat edge computing architecture is to enable parallel utilization of
resources within the network. This approach is particularly ben-
eficial in mobile scenarios where the camera’s movement deter-
mines where frames have to be processed—i.e., avoid overloading
of certain nodes while leaving others under-utilized. We conduct a
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Figure 2: Pipeline in the experimental setup containing modular function blocks and data flow paths

feasibility study to understand how resource consumption and la-
tency are affected in a parallel computational model. While parallel
computations have been long studied in the context of operating
systems and process scheduling, our focus is on processing vision
functions that are generally executed sequentially. There are two
key steps in achieving this. First, once the pipelines have been
broken up, it enables applications to share common modules. For
example, object detection is one of most common computational
module in vision pipelines. Deploying the entire pipeline on a single
machine in siloed processes can lead to wasted resources due to
the inability to share common modules among applications. With
a decentralized approach, applications are not siloed and can im-
prove resource utilization by encouraging resource sharing among
modules. Second, once the pipelines are broken up, modules can be
assembled on-demand for new video analytics applications. Thus
preventing the overhead of installing a new application.
Adaptability.Another desirable characteristic of the flat edge com-
puting architecture is adaptability. Adaptability refers to the self-
adjusting nature of the system. Adaptability can be addressed at
two levels. At the micro level, computational blocks shared among
multiple applications must adapt to variations in frame from differ-
ence sources. These variations can range from changes in lighting
conditions to amount of information in the frame. For example, an
increase in number of vehicles in the scene will increase the load
on the modules involved in volume monitoring. This increase in
the load and type of computation will require the system to scale
up (or down to save energy) in the order of seconds. At the macro
level, adaptability refers to the ability of the network in support-
ing multiple computational modules, preferably closer to mobile
cameras even as they move around. In this regard, the placement of
computational blocks can be scaled to meet the analytics demands
from mobile cameras.

4 EXPERIMENTAL SETUP
We implement our test setup using Python-Flask and Gunicorn
on top of an NVIDIA Jetson Nano [5]. The Jetson Nano consists
of a Quad-core ARM A57 CPU, coupled with a 128-core NVIDIA
Maxwell-based GPU and 4 GB of LPDDR4 memory. All our experi-
ments on Jetson Nano are run using Jetpack 4.5.1 based developer
kit image.

In order to isolate the modules and bind them to CPU cores,
we port our test bench to docker. Each module runs on a separate
docker container and compute-heavy modules are bound to specific

CPU cores to minimize the effect of context switching on our eval-
uation. This will also help us to deploy the pipeline over container
orchestration applications, such as kubernetes [7], in future. To
emulate the communication delay, we use Traffic Control (tc) [14]
and its Network Emulation (netem) [8] module to emulate latency
and bandwidth configurations. For the evaluation we consider that
the bandwidth and latency in a Local Area Network (LAN) are 1𝑚𝑠

and 100𝑀𝑏𝑝𝑠 , and in a Wide Area Network (WAN) they are 40𝑚𝑠

and 50𝑀𝑏𝑝𝑠 . We implement the following modules with the char-
acteristics mentioned in Section 3 for our evaluation. The flow of
the frames and messages between the modules is shown in Figure
2.
• Decoding - The decoding module is needed to receive the video
stream from cameras in different formats like H264 or HEVC
and generate individual frames. These frames are in the highest
possible resolution and are sent to the next blocks. In our test
setup, the decoder module uses a prerecorded traffic surveillance
video to generate image frames.

• Compression - An image compression module is used to reduce
the number of bytes being sent to modules located far away in
the network. Lossy compression of images tends to affect the
accuracy of object detection. So the adaptation of compression
rate according to the image context is also an important problem
for the future. We use OpenCV2 to perform image compression.

• Object Detection - Object detection is computationally intensive
in general and can be accelerated by executing it on GPUs or
TPUs. This module processes incoming image frames to gener-
ate bounding boxes of vehicles. As the images could have been
compressed before being sent to this block, the output bound-
ing boxes containing normalized coordinates. Depending on the
image size and network conditions, it can be beneficial to send
frames to a far away edge node equipped with a GPU rather than
locally processing on CPU.

• Vehicle Counter - The number of vehicles passing through inter-
sections is an important statistic a city administrator would want
from a video analytics pipeline. Vehicle counting is performed
by using bounding boxes from Object Detection and operator-
specified boundaries for each camera.

• Cropping - The image cropper caches the incoming images and
crops them once it receives the bounding boxes. It uses the image
resolution and the normalized bounding boxes to get the exact
pixel locations. The cropped images are significantly smaller in
size compared to the full images as they contain only the areas
of interest.
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Metric 480P 360P 240P
Percent Decrement in #objects 0.97% 1.08% 1.31%
Intersection over Union (IoU) 0.93 0.91 0.87

Table 1: Change in accuracy of bounding boxes with change
in input resolution

• Recognition - The cropped images can be processed to get the
car’s color and used for logging vehicle activity.
Every module needs to use a common language for messages

and should be compatible with all possible platforms and architec-
tures. We choose to use HTTP based communications to 1) simplify
the building of our test bench, and 2) favour future adaptation to
existing frameworks that rely on HTTP microservices. Gunicorn
hosts an HTTP server for the application written in Python-Flask.
All modules are run as Gunicorn web servers in separate containers.
When a module needs to send data like image frames and bound-
ing boxes of objects to another module, it makes an HTTP POST
request to the destination module. The modules implemented in
our test setup contain only stateless functions. Due to this, scaling
up during high load scenarios is easy and only requires replication
of modules and load balancing. Scaling up stateful functions like
object tracking between the frames is not straight forward and we
leave it for future work.

5 EVALUATION
In this section, we aim to understand the impact that distribution
has on pipelines’ performance, and answer three questions: (1)What
is the baseline performance of an analytics pipeline deployed on
our experimental setup, (2) What resources does it consume, and
(3) How much does distribution of nodes in network affects perfor-
mance. We then finally see how it compares to running this pipeline
on a single node. For understanding resource utilization, we look at
CPU utilization, memory in use, and GPU utilization. We also look
at the time taken by the block and overall time taken per frame.

We implement the two sample applications shown in Figure 2:
volume monitoring and car color detection. We deploy these ap-
plications using three different deployment strategies: 1) A fully
centralized solution that uses a single Jetson Nano for processing
the entire pipeline; 2) A fully distributed solution that places all
functions across multiple network regions; and 3) A smartly dis-
tributed solution that assumes multiple devices are available for
CPU processing over a local LAN, while a GPU equipped device is
available traversing the WAN.

Since frames are compressed before being sent to object detection
module in our implementation, having a change in the accuracy is
inevitable. Table 1 shows how the accuracy of object detection using
Yolo V4 changes with change in input resolution. Yolo’s output for
720P version of the same video is taken as the reference.

In Figure 3, we see that the utilization of memory by the modules
changes in the order of 25 MB. The memory utilization of the Object
Detection module is significantly higher than that of the other
modules. This could be explained by the fact that machine learning
models and libraries are large in size. Load to a few modules like
cropping and vehicle counting depends on the number of objects
detected by the object detection module. Change in the traffic in the
video stream causes small changes in the usage of memory by these
modules. We can also notice that running two complete pipelines
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tributed pipeline over time compared to that on single ma-
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Figure 4: Change in processor utilization in distributed
pipeline over time
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Figure 5: Change in processor utilization in single node
pipeline over time

on a single machine occupies significantly high amount of memory.
This can be attributed to the running of multiple instances of the
same functions. Running separate instances of memory intensive
functions like Object Detection for each pipeline leads to large
memory consumption.

In Figure 4, we can see that total CPU usage by the distributed
pipeline stays at 100% most of the time till the end of the execution.
During this time, the system processed a total of 100 frames from 2
different videos. Running the same in a single machine mode took
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more time to execute. Figure 5 shows the CPU utilization over time
for this configuration. We observe that utilization reduces possibly
due to frequent context switching. Further, we note that in both
Figure 4 and 5 utilization of GPU halts while the system executes
rest of the modules.

In Figure 6 we see the number of bytes transferred on an aver-
age per frame in different type of networks. When we choose to
have only the Object Detection module out of the LAN, we redi-
rect most of the traffic from Wide Area Network (WAN) to Local
Area Network (LAN). We can also note that compressing the video
frames before sending them over WAN will reduce the load on
WAN significantly.

From Figure 7 we note that in distributed pipelines, the com-
munication overhead adds up a lot of delay to the time taken to
process each frame. The communication overhead in highly dis-
tributed pipeline is very large as it is sending every message over
WAN. Although the time taken in each frame in smartly distributed
pipelines is approximately 1 second, the frames are concurrently
processed. The cores can also process during the network IO wait
time. From Figure 4 and 7, we can approximate that the smartly
distributed pipeline is capable of processing frames at 10 FPS with
a latency of 1 second.

6 CONCLUSION AND DISCUSSION
In this paper, we proposed a modular decentralized architecture for
performing video analytics at edge. We argue that operations in
video analytics pipeline can, and should, be split into independent
functional modules and horizontally distributed throughout the

network on an on-demand basis. This approach enables applica-
tions to scale up dynamically to support mobile cameras and their
movement. We present a feasibility study of the proposed approach
across different deployment strategies. We find that, if intelligently
used, the distributed approach can improve overall system perfor-
mance by taking better advantage of all computing resources, while
compensating for the additional latency introduced by network
transmissions.

In futurework, we aim to build on these initial results by automat-
ing pipeline deployment, implementing strategies for selecting the
location of processing modules across multiple applications. We
also intend to build a programming construct which can be used to
easily create video analytics functions as modules and build appli-
cations on our platform. Further, we will integrate mobile sources
to validate how the architecture can dynamically adapt to changing
conditions over time.
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