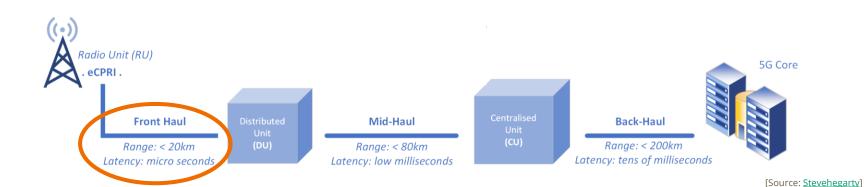
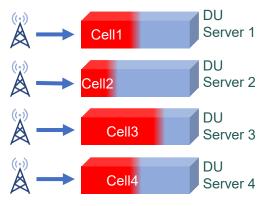


Constellate: Establishing the opportunity for Distributed Unit pooling in real-world 5G Radio Access Networks


Sri <u>Pramodh</u> Rachuri¹, Anshul Gandhi¹, Gueyoung Jung², Shankaranarayanan P. Narayanan², Alex Zelezniak²

¹PACE Lab, Stony Brook University ²AT&T Labs

Background


Background

Background – vDU pooling

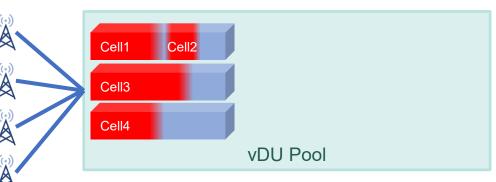
Without pooling

- Every RU/Cell mapped to a DU
 - Created once forever
- Need to provision for max spike
- Wastage and Fragmentation of resources

With pooling and virtualization

- DU software is virtualized
 - Shared hardware
 - Reduced fragmentation
- Cell migration but with overhead
- Less provisioning for spikes

Background – vDU pooling

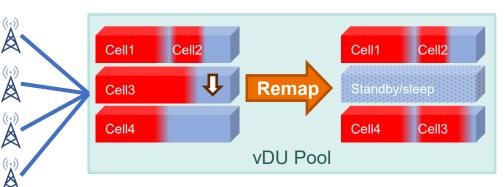

Without pooling

- Every RU/Cell mapped to a DU
 - Created once forever
- Need to provision for max spike
- Wastage and Fragmentation of resources

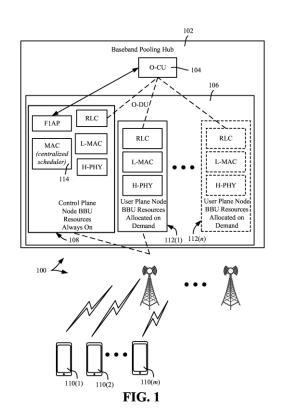
With pooling and virtualization

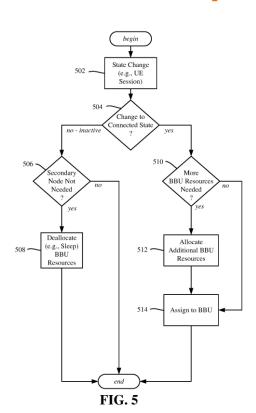
- DU software is virtualized
 - Shared hardware
 - Reduced fragmentation
- Cell migration but with overhead
- Less provisioning for spikes

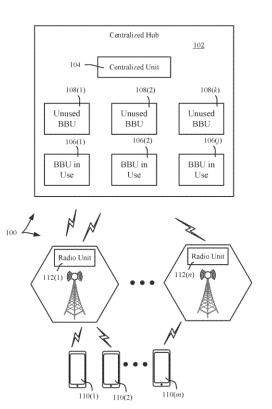
Background – vDU pooling

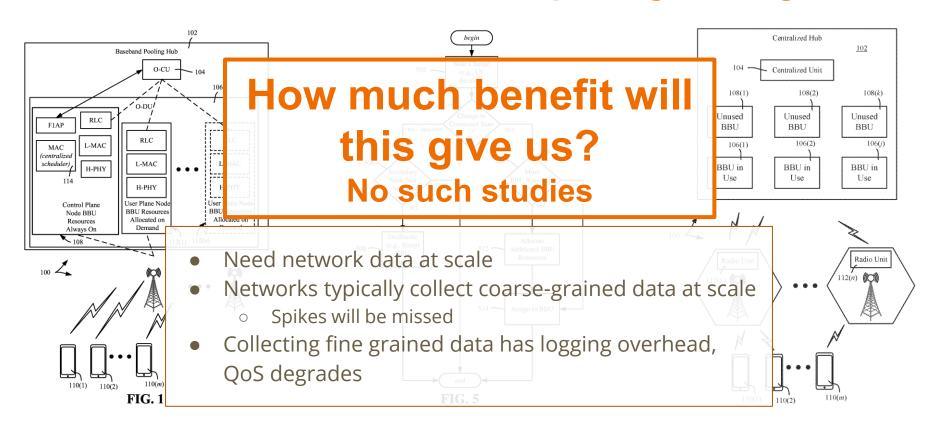

Without pooling

- Every RU/Cell mapped to a DU
 - Created once forever
- Need to provision for max spike
- Wastage and Fragmentation of resources




With pooling and virtualization


- DU software is virtualized
 - Shared hardware
 - Reduced fragmentation
- Cell migration but with overhead
- Less provisioning for spikes


Prior work – mechanism for vRAN pooling and migration

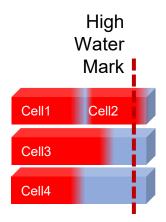
Prior work – mechanism for vRAN pooling and migration

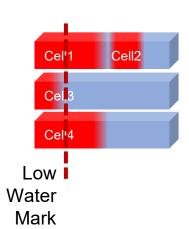
Our Contributions

- Three strategies for pooling
 - Greedy
 - Affinity
 - Dynamic
- Generate fine-grained estimates of the cell workload
- Evaluate pooling benefits using largescale real-world network traces

- Placing and moving cells across vDUs servers
 - Resource utilization of cells
 - Max vDU server capacity
 - Bin packing algorithms
 E.g. First-fit, <u>Best-fit</u> etc

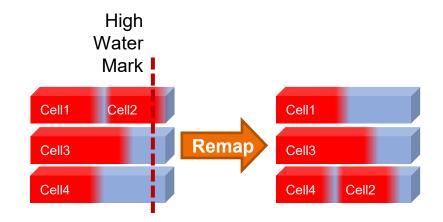
- Placing and moving cells across vDUs servers
 - Resource utilization of cells
 - Max vDU server capacity
 - Bin packing algorithms
 E.g. First-fit, <u>Best-fit</u> etc

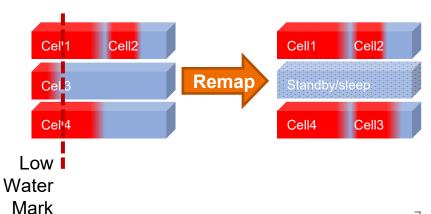



- Greedy Best fit
 - Sort cells by util (decending)
 - Iterate over cells
 - Find the tightest bin the cell fits
 - If none, spin-up new bin (server)

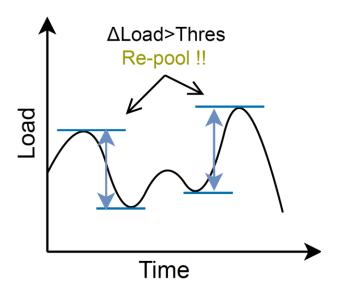
- Reacting to change in utilization
 - Re-pooling frequency?
 - Keep running bin packing?
 - No affinity
 - Overhead of remapping

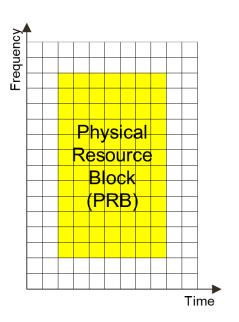
Affinity pooling


- High and low water mark detection
- High detected on a vDU
 - Move busiest cell away
 - Try best fit (tightest fit)
 - Else, new vDU
 - Repeat till below high water mark
- Low detected on a vDU
 - Move all cell away to other vDUs
 - Best fit
 - Emptied vDU set to sleep



Affinity pooling


- High and low water mark detection
- High detected on a vDU
 - Move busiest cell away
 - Try best fit (tightest fit)
 - Else, new vDU
 - Repeat till below high water mark
- Low detected on a vDU
 - Move all cell away to other vDUs
 - Best fit
 - Emptied vDU set to sleep


Dynamic pooling

- Keep monitoring total load across all cells
- Re-pool only when difference exceeds a threshold

Measuring load of a cell

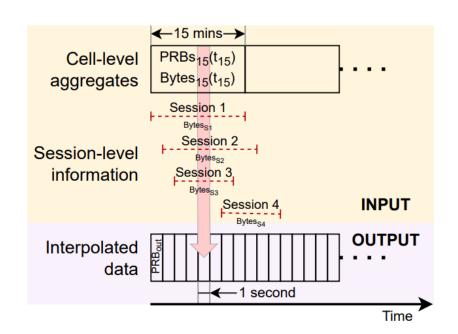
- Cell load processing for pooling and migration
- Pick existing metric as proxy
 - Physical Resource Blocks (PRBs)
 - Smallest allocation unit in RF
 - Both time, freq
 - Prior work show high correlation with CPU processing load
 - Bytes does not work well
 - Channel quality decided ratio

Evaluation Methodology

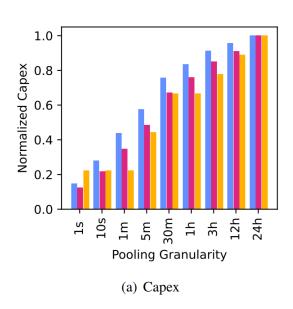
Anonymized 5G network traces

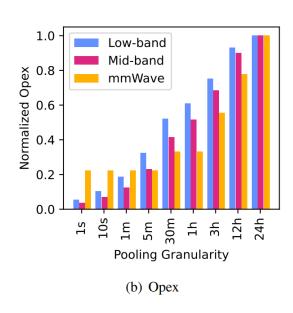
- No UE/user identifiable information
- Tier 1 network operator- 2.9k cells
- 3 different freq ranges
 - Low, Mid and mmWave bands
- 3 different types of locations
 - Urban (cluster 1)
 - Suburban (cluster 2)
 - Rural (cluster 3)
 - o <10 KMs

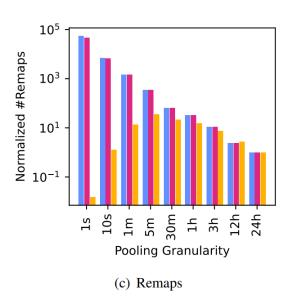
	Low Band			Mid Band			mmWave		
Cluster ID # Cells	1 1328	2 158	3 63	1 1262	2 59	3	1 37	2	3
Band Total			1549			1324			37

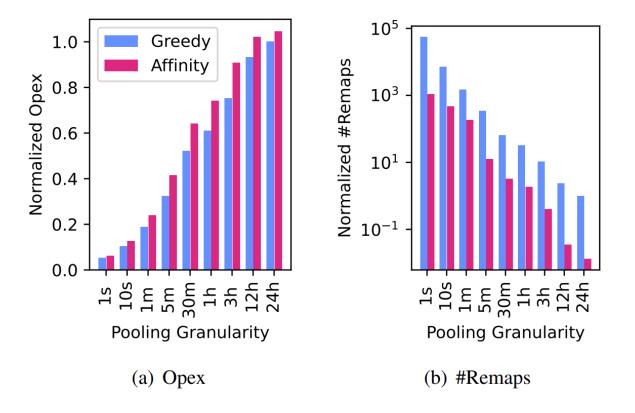

Evaluation metrics

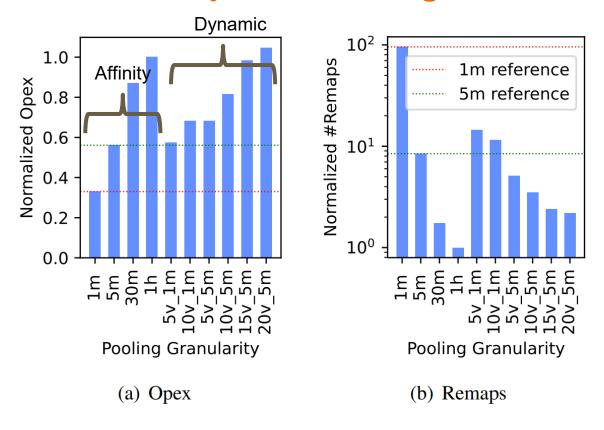
- Capital Expenditure **Capex**
 - One-time expenditure on buying equipment
 - Captures 'max' number of servers
- Operational Expenditure Opex
 - Continuous expenditure on running equipment
 - For example- electricity
 - Captures 'mean' number of servers
- Number of remaps #Remaps
 - Num of times a cell has been remapped
 - Captures 'overhead' of re-pooling
 - Effective overhead is heavily dependent on implementation


Obtaining fine-grained PRB usage


Two different types of datasets


- Coarse grained cell aggregates
 - Collected at order of 10s of mins (e.g. 15 mins)
 - Both PRBs and Bytes
- Fine grained session info
 - Collected at order of seconds (e.g. 4 seconds)
 - Only has bytes. No PRBs
- Information from both datasets combined
 - Sum up bytes/sec across active sessions in a cell
 - Multiply with PRBs/Bytes ratio from cell aggregates


Evaluation Results – Different Bands



Evaluation Results – Greedy vs Affinity

Evaluation Results – Dynamic Pooling

Conclusion

- First paper studying the gains with DU pooling in 5G
- Used 5G network traces from real-world deployments
- Proposed interpolation techniques to get estimated finegrained data
- Proposed greedy, affinity and dynamic pooling algos
 - Showed 84% and 94% gains in Capex and Opex [greedy]
 - Achieved 40% reduction in pooling overheads while only incurring 22% less in the pooling benefits [affinity and dynamic]
- Integrating our strategies by providers should be possible
 - Only feasible-to-collect metrics are used

Thanks for your attention

Any Questions?

Paper (slides coming soon)

Key Points-

- Study of DU pooling benefits using real-world 5G traces
- Interpolation techniques
- Affinity & Dynamic pooling
 - o 84% and 94% gains in Capex & Opex
 - 40% reduction in pooling overheads
- Feasible-to-collect metrics are used