
OVIDA: Orchestrator for Video Analytics on
Disaggregated Architecture

Manavjeet Singh1, Sri Pramodh Rachuri1, Bryan Bo Cao1, Abhinav Sharma1, Venkata Bhumireddy1,

Francesco Bronzino2, Samir R. Das1, Anshul Gandhi1, Shubham Jain1
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Abstract—Millions of video cameras are deployed globally
across major cities for learning-based video analytic (VA) appli-
cations, such as object detection. Video streams from the cameras
are either sent over the wide-area network to be processed by
the cloud or are (at least partially) processed in a local edge
workstation, incurring significant latency and elevated financial
costs. In this paper, to minimize reliance on the cloud and
overcome the unavailability of high-compute workstations on
edge, we investigate the use of heterogeneous and distributed
embedded devices as edge nodes shared by multiple cameras
to fully serve the video processing needs of a VA application
(without requiring cloud support).

We present OVIDA, an edge-only orchestrator to deploy VA
application(s) on a distributed edge environment to maximize
accuracy. Given the resource-constrained nature of edge nodes,
OVIDA disaggregates the VA application pipeline into multiple
modules. OVIDA’s core functionality and contributions are: (i)
optimizing the placement and replication of the VA application
modules across the edge nodes to maximize the throughput, and
in turn, accuracy; and (ii) an adaptive model selection algorithm
for VA modules based on accuracy-throughput trade-off to
maximize accuracy in response to varying load conditions. To
further improve performance, OVIDA employs a central-queue–
based design (instead of the usual push-based design), which
also obviates the need for complex load balancing algorithms.
We implement OVIDA on top of Kubernetes and evaluate
its performance for three VA applications, supported over a
heterogeneous edge cluster under varying network conditions.
When compared against several baselines in our evaluation, we
achieve throughput and accuracy gains of at least 51% and 28%.

Index Terms—Video Analytics, Edge-only Deployment, Disag-
gregation, Module Placement, Model Selection

I. INTRODUCTION

A significant rise in the deployment of cameras to support

diverse applications in surveillance, health-care, transportation,

and safety has led to the wide adoption of video analytics

systems [1]. These systems use advances in computer vision

and machine learning, fueled by the growth in edge and cloud

computing paradigms. The global video analytics market is

estimated to grow from $5 billion in 2020 to $21 billion

by 2027, at a CAGR of 22.70% [2]. This level of growth

necessitates efficient systems that can perform live Video

Analytics (VA).

Traditionally, cloud computing has been favored due to

the intensive computational requirements posed by VA ap-

plications using Deep Neural Networks (DNNs). However,

this computatonal capability comes at a cost of significant

latency, elevated financial costs, and privacy issues [3]–[5].

For example, there are 15,576 CCTV cameras in London

Underground train stations; enabling live streams of these to

the cloud would require significant capital and operational

expenditures [6]. In contrast, the edge computing paradigm

offers reduced latency and enhanced privacy by bringing data

processing closer to the source [4], [7], albeit with weaker

compute nodes. Edge computing is also beneficial for remote

cameras that may not have a high bandwidth connection

to the cloud and in settings where using the cloud is not

economical [3].

Unfortunately, edge devices, such as Jetson Nanos, Jetson

Orins [8] and Raspberry Pis [9], are significantly less capable

than cloud servers in terms of processing power, memory

size, and connectivity. Since DNNs have high memory and

GPU requirements, a single edge node may not have sufficient

resources to execute an entire VA application with satisfactory

performance; in the VA context, performance is typically mea-

sured in terms of accuracy or throughput. In response, recent

works have suggested breaking (i.e., disaggregating) the VA

pipeline into its individual constituent functions (referred to as

‘modules’ in this paper) and deploying them as microservices

(or ‘services’) on multiple edge nodes [10]–[13].

However, disaggregating VA pipelines across the edge poses

four key challenges. (i) Reduced data locality: The input

and output data sizes of VA modules in a pipeline can vary

significantly, resulting in severe data transfer delays over

diverse edge networks if modules are not placed appropri-

ately. (ii) Heterogeneity: Modules may have different resource

requirements (e.g., memory, GPU), and can have variable per-

formance on heterogeneous edge nodes. (iii) Underutilization
of resources: Due to disaggregation, each module has to spend

a significant amount of processing time in I/O operations,

which results in the underutilization of GPU resources. (iv)

Large model space: Often, there are multiple models that

can be employed to perform a single VA task on a specific

compute node. These models, however, can vary in resource

consumption, service rates, and content-specific accuracy. Due

to their differences, the models might react differently to real-

world dynamism in arrival rate and frame content, making

selecting the appropriate model an important challenge.

These challenges necessitate intelligent resource allocation,

placement policies, and efficient model selection for a dis-

tributed edge. Unfortunately, existing solutions are either not

optimized for multi-function pipelines [14], [15], assume that

there will only be one neural network-based VA-application



Fig. 1: A summary of accuracy and throughput performance

results, comparing OVIDA with other placement policies,

normalized against Monolithic. The center of each ellipse

represents the median, while the radius in each direction

indicates the standard deviation.

service [11], or are not able to optimally use the resources

on an edge node [16]. Several works offer techniques to

select the optimal model based on the given constraints [14],

[17]–[20]. Most of them depend on the inference of the

“golden configuration” – the best possible configuration. Such

an approach requires all or most models to be loaded into

the memory simultaneously, which is infeasible in embedded

devices such as smart cameras due to memory limitations.

This paper presents the design and implementation of a

distributed framework, OVIDA (Orchestrator for VIdeo ana-

lytics on Disaggregated Architecture), for efficiently deploying

disaggregated VA pipelines over network-connected heteroge-

neous edge nodes to maximize the throughput and accuracy

of the VA application. OVIDA also features a lightweight

pseudo-central queue-based mechanism that minimizes queu-

ing delays, reduces per-frame latency, and obviates the need

for complex load balancing in heterogeneous settings. OVIDA

is enabled with a lightweight solution to dynamically choose

and switch models on edge devices in response to changes in

arrival rate and frame content.

OVIDA presents a complete deployment solution for dis-

tributed VA on the edge. We disaggregate the VA pipelines

into stateless modules and make the following contributions:

• Replication and Placement: OVIDA performs bottleneck

function detection and horizontally scales bottleneck mod-

ules by deploying multiple instances. These instances are

placed across edge nodes to maximize the end-to-end

throughput (proportional to accuracy) of the VA pipeline,

while optimizing resource utilization at each node.

• Adaptive model selection: OVIDA continuously estimates

the best DNN model based on load–accuracy trade-off,

leading to the best possible accuracy, without requiring to

search through the entire space every time.

• Load balancing: We use insights from queuing theory to

implement a lightweight central queue-based mechanism

that minimizes queuing delays (leading to a lower per-frame

latency) and obviates the need for complex load balancing.

We implement OVIDA over Kubernetes [21] using

Docker [22] to containerize each module instance. We demon-

(a) Activity recognition pipeline.

(b) Number plate recognition and vehicle counting pipelines;
object detector is a common function for these two pipelines.

Fig. 2: Illustration of the three VA pipelines implemented and

evaluated in this paper.

strate the performance of OVIDA for three VA application

pipelines, supported over a heterogeneous edge cluster under

varying network conditions. We also compare OVIDA’s per-

formance against several baselines, including those from recent

works [11], [16]. Based on experimental evaluations, we show

that OVIDA’s placement achieves up to 41% improvement in

accuracy compared to the next-best placement policy. Figure 1

shows the accuracy and throughput of OVIDA compared

to other baseline policies across various deployment scenar-

ios (see Section VII-A for experimental details). Combining

OVIDA’s placement and dynamic model selection further

increases the accuracy gains by 15%.

II. BACKGROUND AND MOTIVATION

This section provides essential background on video analyt-

ics, edge computing, and the availability of diverse models for

VA applications. It also motivates the need to maximize re-

source utilization of edge nodes and implement input-specific

dynamic model switching to enhance accuracy.

Video Analytics (VA) refers to analyzing video content

using computer vision techniques. A VA application typically

consists of several vision functions, chained together to form

a pipeline, where the output of one function is the input

to the next. The VA pipelines used in this paper for the

evalution study are Activity Recognition (AcRg), Number

Plate Recognition (NPR), and Vehicle Counting (VC), as

illustrated in Figure 2. Note that NPR and VC have a common

function – the object detector. The functions in VA pipelines

may differ significantly in resources required (e.g., CPU, GPU,

and memory) and their input/output data sizes.

Edge Computing aims to reduce the bandwidth and latency

requirements when compared to the cloud by using comput-

ing resources near the data source [5]. VA applications are

excellent candidates for edge computing, as it eliminates the

need to send large video content over the network to remote
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Fig. 3: Improved GPU utilization obtained by placing multiple

bottleneck modules on an edge device.

cloud servers. Moreover, processing data on hardware that is

already owned and paid for by stakeholders such as cities,

service providers, or the users, gives an economic and privacy

incentive to use edge computing. However, edge-only systems

do have some drawbacks when compared to a cloud data

center; they have limited resource availability (e.g., memory

and compute) and are typically heterogeneous in terms of

computing and connectivity.

Since edge nodes are underpowered and have limited

resources, it is essential to maximize their utilization. We

conduct an experiment to investigate the opportunity to host

multiple functions on a single edge node. Our key insight

is to leverage the time spent on I/O operations by each

function. As can be seen in Figure 3, the GPU is significantly

underutilized when only a single instance is supported. This

is due to high I/O overhead in a disaggregated pipeline—

frame transfers over the network and unavoidable hardware

limitations such as copying an image to GPU memory before

it can be processed. However, when two module instances

(or replicas) of the bottleneck service are placed together,

they work in parallel and share the GPU, resulting in much

higher (∼ 3.6×) GPU utilization due to interleaving. Further,

deploying two instances of the bottleneck module on the

same device under the same load nearly doubles the achieved

throughput. Thus, multiplexing DNN-based modules over a

GPU-enabled embedded edge device can improve resource

utilization and overall pipeline throughput and accuracy. Prior

works, however, do not exploit this feature and only deploy a

single pipeline module per application on an edge device [16].

Diverse model implementations. A given VA task can

be serviced at varying levels of performance by different

model implementations. In particular, the computer vision

community offers a variety of DNN models with different

levels of accuracy, inference times, and resource consumption

for performing the same tasks. For example, models like

YOLO [23], which are used for detection, pose estimation,

classification and other applications are available in multiple

sizes (e.g., nano, small, and medium) and differ in their

accuracy and resource consumption because of differences in

their number of model parameters. At low load, a simpler and

faster model (such as a nano variant) might perform worse than

a more powerful model (such as a medium variant). However,

as load increases, for example, due to additional video streams,

the medium model variant will drop more frames due to slower

inference times. Subsequently, it may end up performing worse

Hosted
Modules

Hosted
Modules

Hosted
Modules

Hosted
Modules

Module instances shared by one or more pipelines.

Network

Fig. 4: Overview of distributed edge devices featuring multiple

VA pipelines. Each colored box represents a VA module hosted

on the edge device. The modules are replicated as needed.

than the nano model, which may not have to drop any frames

due to its lightweight needs.

Prior works have proposed techniques to select the best

possible model to perform a VA task in response to changes

in input [18] and required quality of service [14], [17] (see

Section VIII for a discussion of related works). All of these

require all models to be pre-loaded into the memory for a

periodic comparison. Unfortunately, this is not possible in

memory-constrained embedded devices.

III. SYSTEM DESIGN AND IMPLEMENTATION

This section discusses the fundamental system design de-

cisions behind OVIDA, including the disaggregation of the

VA pipeline (Section III-A) and the central queue-like archi-

tecture (Section III-B). We discuss the key contributions of

OVIDA— module instance placement and model selection—

in Sections IV and V, respectively.

A. Microservice-based distributed pipeline

The functions in a VA pipeline can either all be placed

on a single device in a monolithic fashion or across multiple

devices in a distributed fashion. A monolithic deployment has

the following major drawbacks, especially when deployed on

the edge: (i) Each edge node may lack sufficient memory

to host all required function models (note that our choice of

pipelines and edge nodes still allows us to evaluate monolithic

deployment in Section VII); (ii) New frames start processing

only after the current input has been fully processed through

the pipeline; (iii) The architecture cannot scale effectively with

the bottleneck function of the pipeline.

To avoid the limitations of a monolithic deployment on the

edge, we design a distributed pipeline that splits a VA appli-

cation into multiple functions, where each function works in-

dependently. OVIDA packages each VA pipeline function as a

microservice (or service), and each service may include one or

more replicas of containerized functions called ‘modules’ (see

Figure 5b). Module instances (or replica) can be distributed

across network-connected nodes as needed, avoiding resource
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Fig. 5: Example illustrations of (a) a pipeline with 3 modules

and with one instance each, and (b) the same pipeline with 3

modules but with multiple instances for modules A and C.

limitations (e.g., memory availability, illustrated in Figure 4).

The distributed design also provides another key benefit—

scalability. Since edge devices are resource-constrained, the

throughput of a specific module may be limited; by horizon-

tally scaling a module using multiple instances, we alleviate

bottlenecks. In contrast, a monolithic deployment requires

replicating the entire pipeline, not just the bottlenecked mod-

ules. However, a drawback of disaggregating the pipeline

is the additional I/O costs of transferring frames between
the modules. With careful module placement (Section IV),

our evaluation in Section VII shows that this cost can be

minimized, and is significantly outweighed by its benefits.

Leveraging the horizontally scaled instances of a module

requires careful resource allocation among them to avoid

processing and queueing delays. Each module instance can

have varying throughput based on the compute power of the

edge node, the other modules sharing the node, and the current

input load. Thus the resource availability at an edge node

can change dynamically and abruptly. We next discuss how

OVIDA’s architecture design is inherently tailored to handle

such dynamic scenarios.

B. Pseudo-central queue design

In general, distributed applications employ a “push” based

architecture, where input data, such as frames or objects,

are pushed from the source to the servers (or module in-

stances, as in our case); such push-based architectures have

been employed in recent VA works, such as Distream [12],

VideoEdge [24], and Hetero-Edge [11], among others. This

architecture works well if there is only one instance (as shown

in Figure 5a) or if each of the multiple instances of a module

has the same processing rate. However, this is not true in

heterogeneous edge-based VA systems where different in-

stances may have different resource capacities and availability

(due to CPU and GPU sharing), and thus different processing

rates. Consequently, an instance with a lower processing rate

must either maintain a possibly ever-increasing queue or drop

some frames. On the other hand, an instance with a higher

processing rate might idle.

To address the issue of heterogeneous processing rates,

OVIDA employs a central queue implementation, which is
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Frames
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Frames
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Module Instance
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Frames
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2

3
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Queue

Entry
Queue

6

Fig. 6: Module instance in pseudo-central queue design.

pull-based instead of push-based. Under this implementation,

an instance pulls frames to process only when it is ready

to process them, i.e., once it has completed processing the

previous frames. Queueing literature informs us that a central

queue-like policy (single queue, multiple servers, such as

M/M/k) provides significantly lower frame processing time

than a round-robin, push-based policy [25, Chapter 14.4].

This is because, with a push-based policy, incoming jobs (or

frames) can get stuck behind a slow job at an instance; this is

not the case with a pull-based central queue.

An idealized central queue concept assumes that there is

no communication delay between the central queue and the

module instances. In real edge deployments, however, network

link delays are not negligible. To minimize these delays in

practice, OVIDA makes use of buffers that we call entry and

exit queues, as explained below.

Design details: OVIDA amortizes data transfer delays by

pulling multiple frames (equal to the buffer size of the entry

queue) from the central queue to an idle instance. We refer to

this architecture with the buffers as a pseudo-central queue.

Figure 6 shows the major components of OVIDA’s pseudo-

central queue design.

• Entry and Exit Queue are the shared data structures that

serve as buffers among API Server, Fetcher, and Function.

• API Server runs an HTTP server and provides API for

receiving frames and handling frame requests. The received

frames are stored in the entry queue 3©. The requested

frames are sent from the exit queue 6©.

• Fetcher runs on a separate thread inside the API Server. If

the entry queue is not filled 1© and has n empty buffer

spaces, it requests n frames to be sent from a module

instance of the previous service (using the latter’s Server

Process API) 2©. The Fetcher keeps requesting frames from

instances of the previous service (see Figure 5b) in a round-

robin fashion until the entry queue is full.

• Function runs the main task of processing a frame. It pops

the unprocessed frame from the entry queue 4©, processes

it, and pushes it into the exit queue 5©. If the exit queue

is filled up to a set limit (generally shallow), the worker

process will stop popping from the entry queue and cease

the Fetcher. For the first module in the pipleline, if the entry

queue is full, incoming frames from the frame decoder are
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dropped until there is space available in the entry queue.

We evaluate the impact of the pseudo-central queue on a

distributed and heterogeneous deployment of a Number Plate

Recognition pipeline (more in Section VII) and find that the

pseudo-central queue design achieves as much as 4× lower

latency compared to push-based under high loads. As such,

we employ the pseudo-central queue in our implementation of

OVIDA (and all baselines, see Section VI-C).

IV. PLACEMENT AND REPLICATION

In general, the throughput of a VA pipeline can be increased

by: (1) using faster edge nodes, (2) optimizing the utilization

of the available edge nodes, or (3) employing a faster variant

of the DNN used in a module. Unlike the cloud, upgrading

to a faster edge node on the fly (option 1 above) is not

practical due to the limited availability of edge devices. In

this work we explore the other two options. We first discuss

option 2 in this section. This is aimed at improving the

utilization of available resources via careful model placement

and replication. In Section V, we will follow up with option

3—dynamic switching between faster-but-less-accurate and

slower-but-more-accurate versions of DNNs.

Recall that our objective in this paper is to maximize the
accuracy of the pipelines deployed on distributed, diverse

edge devices. Higher throughput leads to increased accuracy

by reducing the number of dropped frames [19], [26]. Frame

drops primarily come from an imbalance of processing rates

at different stages of the pipeline, giving rise to excessive

queuing at one or more stages. This can be alleviated by a

‘bottleneck removal’ approach. We iteratively replicate and

strategically place the bottleneck modules. Bottleneck mod-

ules are those modules generating the highest delay of all

modules in the pipeline, where the delay of a module is

the sum of the network transfer delay plus the processing

time for that module. While we do not directly optimize

latency, it is achieved indirectly by identifying and alleviating

the bottleneck. To prevent queue buildup, the queue size is

kept very small, thereby capping maximum queuing delays.

The proposed strategy must be executed on already resource-

constrained edge devices, and therefore, it must have a low

overhead. So, we look for low-overhead, fast heuristics that

work well in practice.

Identifying the bottleneck module(s) is important before

replicating it and determining optimal placement. A key chal-

lenge in a dynamic setting is that the bottleneck may shift
with load or with a change in deployment. For example,

consider the pipeline shown in Figure 5a. For simplicity,

assume each new instance of a module has equal throughput.

If the inference time per request for each module is in the

ratio 2 : 1 : 3 (corresponding to Module A, B, and C),

then Module C is the bottleneck. Adding a new instance of

Module C and distributing the load equally changes the ratio

to 2 : 1 : 1.5, shifting the bottleneck to Module A. There

are also other challenges. The bottleneck depends also on the

actual placement of module instances, even if the number

of module instances remains unchanged. For example, the

TABLE I: Notations

E The set of all available edge devices
τm,e Mean processing (service) time of module m on edge device e
λk Fraction of aggregated (input) arrival rate of all frames

over all pipelines that is attributed to pipeline k
dm,e Mean network delay experienced by module instance m

on edge device e
fk,m,e Fraction of frames of pipeline k processed by module m

on edge device e

inference time ratios in the above example may depend on the

actual devices the modules are located on and their resource

availability, which in turn depends on hardware configurations

and workloads. Overall, instead of trying to achieve a global

optimal over all possible replications and placements which

is an np-complete problem [27], we use a simple iterative

approach based on bottleneck analysis that we will describe

in the following subsections.

A. Bottleneck Analysis

We define our problem as minimizing the ‘cost’ of the

bottleneck module while keeping GPU and memory usage for

all modules within predetermined bounds to avoid resource

contention. These bounds are set by available edge resources.

The cost of a module instance is the sum of network delay d
for data transfer from the previous module and the inference

time τ of the module instance, given the current placement

choices being considered. This cost is scaled by the fraction

of frames sent to the module instance computed over all

frames arriving at the entire system over all active pipelines

(similar to the use of ‘visit ratios’ in classical bottleneck

analysis.) This scaling factor depends on respective arrival

rates of different VA pipelines, the number of pipelines sharing

a specific module and the number of instances of the module

used. The notion of cost above thus signifies the ‘service

demand’ on the module.

Similar to other works [14], [19], we perform offline profil-

ing to determine the inference time for each module for each

edge device. We similarly use profiling to estimate the amount

of data transferred between modules to estimate the network

transfer delay. We use a simple estimate of the network

bandwidth to compute the delay. For infrequent changes, such

as adding a new camera with a different stream resolution,

offline profiling and subsequent placement can be redone. For

more real-time changes in arrival rate and frame content, we

propose dynamic model switching (Section V) that is not

captured in the solution approach we discuss here.

B. Iterative Approach

The necessity to solve replication and placement prob-

lems jointly while being mindful of heterogeneity makes this

problem challenging. Besides, using compute-intensive opti-

mization methods such as mixed integer linear programming

(MILP) is not feasible in resource-constrained edge devices,

encouraging the need for lightweight heuristics.

OVIDA uses an iterative approach for bottleneck identifica-

tion and removal. An initial placement is iteratively improved
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by first identifying the bottleneck module and then replicating

that module and placing the new module instance, assuming

the needed edge resources are available to accommodate the

new instance. This in turn changes the costs of some or

all modules as the service demand changes due to changes

in visit ratios, and speficially reduces the bottleneck cost.

The iterations continue until a saturation point is reached,

i.e., no improvement in the bottleneck cost is possible or

no further resources are available to replicate and place new

instances. Note that the algorithm reduces the bottleneck cost

monotonically, thereby guaranteeing convergence.

Algorithm 1 Initialization

1: for s ∈ S do
2: cost ← ∞
3: node ← None

4: m ← new module instance of service s.

5: for e ∈ E do
6: lowestcost ← d[m][e] + τ [m][e]
7: if lowestcost < cost then
8: cost ← lowestcost
9: node ← e

10: end if
11: end for
12: Place e ← m
13: end for

Initialization: To initialize the pipeline, OVIDA iterates

through all services in the order of their position in the VA

pipeline, placing one module instance per service. Iteration

in the order of positon in the pipeline is critical because the

networking cost calculation for each module depends on the

placement of modules in the previous services. Each module

is placed on the edge node with the lowest cost for that

specific module. This initialization algorithm is illustrated in

Algorithm 1.

Bottleneck detection and interative replication and place-
ment: Algorithm 2 describes the iterative approach men-

tioned before. For notational convenience we assume that

the same module is not replicated multiple times on the

same edge device.1 A data structure in the form of a cost

matrix is maintained — cost(m, e) that presents the cost

when a module instance m for service s is placed on edge

device e. The visit ratios are also maintained in a similar

form visit ratio(m, e), presenting the fraction of the ag-

gregated arrival frame rates seen by this instance. Note that

visit ratio(m, e) =
∑

k λkfk,m,e, where λk is the fraction

of total arrival frame rates attributed to the VA pipeline k that

uses this instance and fk,m,e is the fraction of the frames of

the pipeline k processed by this instance. fk,m,e is determined

by the algorithm.

cost(m, e) = visit ratio(m, e)× (dm,e + τm,e).

1This is only to simplify presentation, the algorithm implemented and
evaluated can handle any possibility.

Algorithm 2 Placement and replication

1: (m, e) = argmax cost[][] /* Identify the bottleneck */

2: ec = φ; lowestcost = ∞
3: for e′ ∈ E do
4: Copy cost[ ][ ] to cost′[ ][ ]
5: Copy visit ratio[ ][ ] to visit ratio′[ ][ ]
6: if enough remaining capacity on e′ to accommodate

m then
7: /* Check whether the bottleneck can be removed*/

8: Update visit ratio′[m][e] for all (m, e) for

which cost′[m][e] is defined, assuming a new

instance of m is now mapped on e′.
9: Recalculate cost′[ ][ ] based on updated

visit ratio′[ ][ ]
10: if cost′[m][e] < cost[m][e] and max cost′[ ][ ] <

max cost[ ][ ] then
11: /* This choice removes the bottleneck*/

12: /* Remember the choice */

13: if max cost′[ ][ ] < lowestcost then
14: ec = e′; lowestcost = max cost′[ ][ ]
15: end if
16: end if
17: end if
18: end for

Algorithm 2 presents one single iteration. In each iteration,

the largest element (m, e) of the cost matrix represents the

current bottleneck. An additional instance of the bottleneck

module m is created. A check is performed to see whether

this new instance, when placed in edge node e′ ∈ E, alleviates

the bottleneck, assuming that such placement is at all doable

(i.e., e has enough remaining capacity). For each check, the

visit ratios are (temporarily) updated by recalculating fk,m,e,

for all e where an instance of the module m is already

placed (including the new e′). For simplicity, fk,m,e is kept

in inverse proportion to the delay (dm,e + τm,e). After these

checks are performed, the best option is selected (ec in the

Algorithm). The best option is the one that reduces the cost

of the bottleneck and any new bottleneck (to be treated again

in the next iteration) has a lower cost than before.

Once the best option is determined, the visit ratios and cost

matrix are updated (not directly shown in the Algorithm).

At this point, the estimated GPU and memory usage of the

chosen edge node e′ are adjusted based on the offline profiled

GPU and memory usage. Thus, the remaining capacity of e′

is available for the next iteration.

The iterations continue until there is no further decrease

in the bottleneck cost or a new module instance cannot

be created/placed due to resource saturation. This heuristic

approach results in higher throughput and accuracy compared

to previously known approaches, as demonstrated in Section

VII. The replication and placement algorithm runs when a VA

application or edge device arrives or departs. However, in real

scenarios, such events are rare, and the computation overhead

is amortized over the system’s total runtime.
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Fig. 7: Load vs. accuracy relationship for three variants of

YOLO model for pose estimation on Orin NX at 25W power

profile.

V. ADAPTIVE MODEL SELECTION

To simplify the placement process, it is assumed that each

module instance will use the most accurate (and often slowest)

DNN model available. Ironically, this can have a negative

impact on accuracy under certain conditions. For example, if

the arrival rate increases, the modules with slower but more

accurate models will not be able to keep up with the load, and

will eventually drop more frames, resulting in an accuracy

reduction. In such cases, accuracy can be improved if each

module dynamically adapts to input load variations and selects

the best model based on the load conditions.

Understanding the trade-off between accuracy loss due to

(i) frame drops and (ii) using faster, less accurate models

is essential. Figure 7 gives an example of this trade-off

between three variants of the Yolov8-pose model [23]: medium

(m), nano (n), and extra-nano (xn) (more on this later in

Section VI). These models differ in terms of accuracy and

inference times. A higher arrival rate results in more frames

being dropped for the slower models, causing faster but less

accurate models to perform better when the load is higher.2

To exploit this trade-off at runtime, a dynamic approach is

needed to switch between different models to achieve the best

possible performance at all times.

Prior studies have introduced methods for model selection

that are optimized for either accuracy or latency. Unfortu-

nately, these approaches have two significant drawbacks that

make them unsuitable for edge deployments consisting solely

of embedded devices. First, they require all or multiple models

to be pre-loaded into the memory [14], [17]–[20]. Given the

limited memory availability and the need for edge devices to

support multiple modules, this is impractical. Second, model

selection methods such as integer linear programming [14],

[19] or custom-trained DNNs [18] are computationally inten-

sive, which further limits their feasibility for being executed on

edge devices. As we discussed in Section IV, for an edge-only

deployment, it is imperative to use low-overhead approaches.

We develop a low-overhead technique for model selection

that adapts to changes in arrival rate and frame content.

2While very high frame rates have been used for this experiment, on edge
hardware with lower capability, lower and more realistic frame rates can
achieve the cross-over points. Also, sometimes the same module is shared
by multiple pipelines, making the effective frame rate high.

The technique requires advance offline profiling for online

estimations. We profile inference times and their impact on

pipeline accuracy for all models using different types of frame

content that may be possible and easily estimated (for example,

different lighting conditions). With this data, we estimate the

relationship between arrival rate and accuracy. We calculate

the drop rate (max(λ−μ
μ , 0)), based on which a fraction

of frames are dropped at equal intervals, and the resulting

accuracy is then recorded. Here, λ and μ are arrival and service

rates, respectively. Then, when the pipeline is operational with

live traffic, each module periodically assesses its arrival rate

and checks for any changes in frame content. Changes in

frame content, such as day, night, and camera out-of-focus

conditions, can be detected using low-overhead classical com-

puter vision methods [28], [29]. Arrival rate and frame content

information can be plugged into the offline-estimated load-

accuracy relationship to estimate the best model for the current

conditions. If a model other than the current one is predicted to

have better accuracy, it is loaded in the background. OVIDA

switches to this new model when the model is loaded and

ready, with very minimal disruption to the pipeline processing.

Note that memory limitations can be managed during the

loading of the new model by employing memory swap, albeit

with a temporary drop in performance.

In our current implementation, the model selection is per-

formed independently for each module, if a choice of models

is available. While coordination across the entire pipeline may

improve performance further, the overheads incurred for such

a joint optimization may not be justifiable.

VI. METHODOLOGY AND EXPERIMENTAL SETUP

A. Experimental Testbed

Our heterogeneous compute testbed consists of five edge

compute devices; two 16 GB NVIDIA Orin NXes (orin nx),

two 8 GB NVIDIA Orin Nanos (orin nano), and one 4 GB

NVIDIA Jetson Nano (jetson nano) [8]. The orin nanos and

orin nxes acted as edge nodes and the jetson nano was used

for streaming. To further increase heterogeneity, orin nxes

were set to 10-watt and 25-watt power profiles each, while

orin nanos were set to a 15-watt power profile. All devices

were connected over a switched LAN with a peak throughput

of 1 Gbps and a link delay of less than a millisecond. We

emulated various limited bandwidth network conditions using

tc packet filtering [30]. We used Kubernetes (K8s) [21] to

connect and manage the cluster of edge devices through

a virtual network. Each function was containerized using

Docker [22]; K8s manages the deployment and networking of

these containers. We considered varying network topologies,

load conditions, and deployment types for evaluations.

Network Topologies: We used three different network

topologies: local area (LAN), wide area (WAN), and a com-

bination of the two (Extended LAN). For LAN, we do not

limit the network in any way. For WAN, download and upload

speeds range from 25–244 and 8–195 Mbps, respectively. Sim-

ilarly for Extended LAN, download and upload speeds range

from 25–1000 and 8–1000 Mbps, respectively. Upload and
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Fig. 8: Illustration of the WAN and Extended LAN network

topologies we experimented with.

download speeds for WAN and Extended LAN are illustrated

in figure 8. Differences between the two are highlighted in

red and green, while identical links are shown in black. The

selection of link delays and bandwidth was motivated by the

Ookla speed test report for fixed networks [31].

B. VA Application Pipelines

To evaluate our contributions, we implemented three VA

pipelines: (i) Number Plate Recognition (NPR), (ii) Vehicle

Counting (VC), and (iii) Activity Recognition, (AcRg).

The NPR pipeline consisting of three unique DNN based

services: object detector (D), number plate detector (N), and

optical character recognition (O). The object detector detects

vehicles in frames. It forwards the cropped images of the

detected vehicles to the number plate detector module(s),

which then detects number plates in the cropped images. The

detected number plates are further cropped and forwarded to

the optical character recognition module(s), which recognizes

the characters in the number plate images and saves the results.

The DNN models used are YOLOv5-medium [32] for the D

modules and YOLOv4-tiny [33] for the N and O modules.

We use the unique number plates detected as the accuracy

metric for NPR pipeline. Due to the absence of a ground truth

in the dataset employed, we consider the set of number plates

detected when no frames are dropped (“golden configuration”)

as the ground truth.

The VC pipeline consists of DNN-based object detector (D)

and a counter (C). The object detector service is the same as

the one used by the NPR pipeline. The counter counts and

reports the number of vehicles detected by the object detector.

We use the number of cars detected as the accuracy metric.

The AcRg pipeline, inspired by the work of Huang et

al. [34], consists of two DNN-based services: pose-estimator

(P) and activity recognition (A). Pose-estimator detects people

in the image and generates cropped images with pose overlaid

on them. These cropped images are sent to the activity

recognition module(s), which classifies the activity in the

cropped images. The pose-estimator uses yolov8-pose variants

(medium (m), nano (n), extra nano (xn)) [23], trained on the

coco dataset [35]. The medium and nano variants are off-

the-shelf models whereas the extra nano variant was trained

ourselves with a lower depth and width parameters compared

to the nano variant. We fine-tuned two more variants of

yolov8m-pose (md and mb) for pose estimation under specific

conditions: (i) low light, and (ii) out-of-focus frames. This was

achieved by reducing the gamma value and adding Gaussian

blur to the training images from the coco dataset for each

respective variant. The activity recognition uses a yolov8-cls

nano [23] model fine-tuned on the training set of the fall

dataset [36]. Since we have access to the ground truth, we

use F1-score as the accuracy metric for the AcRg pipeline.

Figure 2 illustrates the three pipelines discussed above. All

models used were converted to TensorRT [37] format, which

improves inference throughput without affecting accuracy.

Datasets: We used the VehicleRear dataset [38] which

provides videos captured at 30FPS with 1920x1080 resolution

to evaluate the NPR and VC pipelines. To evaluate the AcRg

pipeline, we used the fall dataset [36] and compiled a single

video from all the images in the dataset.

Load Conditions: The load for the VA pipelines was varied

by adjusting the number of simultaneous streams processed

by the system, ranging from 1 to 3. Increasing the number of

streams beyond 3 resulted in impractically low accuracy due

to the limited performance of the edge devices.

C. Baselines

We compare OVIDA against the following baselines:

• Monolithic is the baseline deployment, where there is no

disaggregation of VA pipeline, wherein the entire pipeline

is implemented as a single code block on a single compute

device. Unlike a disaggregated deployment, there is no

parallelism and an input frame is processed completely

through the pipeline before a new frame can start processing.

Each stream has its own monolithic module and there is no

sharing of frames among them.

• MCAPP is a solution framework for the multi-component

application placement problem proposed by Bahreini et

al. [16]. The placement is done in two steps: (i) Matching the

modules and edge nodes using the well known Hungarian

matching algorithm [39]. The cost for each combination of

edge node and a module is the sum of service cost and the

communication cost between the user and the edge node.

(ii) Considering inter-component communication costs to

make swaps in module-node mappings such that the overall

cost of the pipeline is reduced. The number of instances

of each module deployed corresponds to the number of

streams handled by the deployment. While MCAPP only

allows a single module per edge device, we enhance its

performance by allowing the sharing of an edge device via

modules processing separate video streams.

• HeteroEdge is a placement policy based on Hetero-Edge’s

fast heuristic [11] that places the modules on edge devices

with GPU usage less than a predefined threshold. Although

the original heuristic does not support multiple DNN-based

modules, we made minor tweaks to allow that. The policy

traverses over the module instances in pipeline order for

placement (for example, D-N-O order in NPR pipeline).

Similar to MCAPP, the number of module instances corre-

sponds to the number of streams handled by the deployment.
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(a) Single pipeline.

(b) Multiple pipelines without common modules

(c) Multiple pipelines with common modules.

Fig. 9: Performance comparison between OVIDA and other

policies under different deployment scenarios. All metrics are

normalized with respect to Monolithic.

• OVIDA employs the placement policy from Section IV.

To ensure a fair comparison of placement policies, we use

central-queue–based load balancing (see Section III) for all

baselines in our evaluation.

VII. EVALUATION

We evaluate the effectiveness of OVIDA by measuring

performance and resource consumption via our testbed deploy-

ment. We first evaluate the two main components: OVIDA’s

placement heuristic and adaptive model selection, followed by

an end-to-end evaluation that combines the two.

A. Placement Evaluation

Figure 9 shows the median achieved throughput (in FPS)

and VA application accuracy under various conditions (see

Section VI) for three deployment types: (i) single pipeline

(NPR pipeline), (ii) multiple pipelines without a common

module (NPR and AcRg pipelines), and (iii) multiple pipelines

with common modules (NPR and VC pipelines). The plots are

normalized using Monolithic as the baseline, with all reported

metrics divided by the baseline values. In the case of multiple

pipelines with common modules, OVIDA has the ability to

share common modules, whereas other policies do not.

We see that MCAPP performs poorly, achieving almost the

lowest FPS and accuracy compared to other policies in all

three deployments. Deploying two pipelines without common

modules (Figure 9b) results in a 60% lower accuracy for the

AcRg pipeline and a minimal improvement of 10% for the

NPR pipeline compared to Monolithic. This is to be expected

as MCAPP only places one module instance per stream on

an edge device, thereby incurring communication cost every
time a frame is transferred between module instances.

HeteroEdge performs slightly better than Monolithic for

single pipeline and multiple pipelines without common module

deployments. Unlike MCAPP, HeteroEdge is able to place

multiple module instances on a single device (until GPU or

memory saturation), resulting in lower inter-module commu-

nication delays. Due to the parallelism of a disaggregated
pipeline, HeteroEdge outperforms Monolithic by 7% in terms

of accuracy in the best case (Figure 9a). The unbalance
caused by saturating a device before moving on to the next
one, overshadows the gains of parallalism and results in
performance worse than Monolithic in case of pipelines with
common modules (Figure 9c).

OVIDA outperforms Monolithic, MCAPP, and HeteroEdge
in all deployment cases. In the case of single pipeline de-

ployment (Figure 9a), OVIDA achieves 14% higher accuracy

and 38% higher throughput compared to Monolithic, and 7%

higher accuracy and 27% higher throughput than HeteroEdge,

the next best placement policy. For multiple pipelines without

common modules (Figure 9b), OVIDA achieves 14% accuracy

and 58% throughput gain for the NPR pipeline, and 27%

accuracy and 31% throughput gain for the AcRg pipeline

compared to the next best policy, HeteroEdge. Finally, for

multiple pipelines with common modules (Figure 9c), OVIDA
achieves a 13% accuracy and 50% throughput gain for NPR

pipeline and 41% accuracy and 48% throughput gain for VC

pipeline compared to Monolithic. Sharing common modules

provides an additional accuracy boost of 4% for the NPR

pipeline and 20% for the VC pipeline, compared to Mono-
lithic. Here, VC and NPR pipelines’ common service, object

detector, was the bottleneck. Increasing the number of object

detectors significantly boosts VC’s performance, as it is the

only resource-intensive module in the pipeline.

OVIDA outperforms the baseline approaches because it

alleviates the bottleneck by selectively scaling the module in-

stances. Further, it takes into account the heterogeneous com-

munication delays and service times among edge nodes while

performing the placement. We also find that OVIDA achieves

high GPU utilization (but comparable to HeteroEdge), as

shown in Figure 10, which shows the median GPU utilization

for all policies across all deployments. By more efficiently

placing modules, OVIDA makes better use of GPU resources.
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Fig. 10: GPU usage across all devices for the evaluation shown

in Figure 9.

B. Adaptive Model Selection

We now demonstrate how OVIDA enhances application

accuracy when load changes unpredictably by dynamically

selecting the most suitable model. In the VA context, load

can change as a result of change in arrival rate (for example,

due to change in the number of input streams) or change in
frame content (for example, change in lighting conditions). In

case of change in arrival rate, re-placement can be performed

in response to each change; however, this will cause some

application downtime as modules are redeployed under the

new placement. Nonetheless, re-placement cannot address a

change in frame content as placement techniques are oblivious

to the real-time content of incoming frames.

To enable a low-overhead solution that can also address

changes in frame content, we consider dynamic model se-

lection whereby the underlying model implementation for a

module can be switched at runtime. Dynamic model selection

can lead to better accuracy in the presence of changing

workload conditions, as discussed in Section II. We evaluate

OVIDA’s model selection under two frame transformations:

(i) Darkended frames, representing night or low-light indoor

locations; and (ii) Blurred frames, representing the case where

a camera is out of focus or has been tilted/panned/zoomed to

point to a different location. Such transformations can be easily

detected using classical computer vision techniques [28], [29],

and can thus trigger a search for a better model to improve

accuracy under the transformed frame conditions.

For our model selection evaluation, we use the AcRg

pipeline because the pose-estimation module effectively

demonstrates the benefits of dynamic switching. Similar to our

placement evaluations, we initially deploy all module instances

with the best available model, which can then be switched

later. OVIDA checks for changes in arrival rate and frame

content every ten seconds. If a switch is warranted, the new

model is loaded in the background. Once loaded, the input

workload is redirected to the new model, and the old model is

unloaded from memory. All models we used take ∼25 seconds

to load on orin nano and ∼19 seconds to load on orin nx; note

that the workload is being actively serviced by the older model

while the newer model is loaded.

Figure 11a shows how OVIDA reacts to a change in the

arrival rate. The figure shows the achieved accuracy under

different policies as a function of time. Static policy using

different models is represented as dotted colored lines. Black

solid line shows OVIDA’s adaptive model selection (denoted

as AMS). The green shaded region represents the duration

for which only a single stream is assigned to the deployment

(arrival rate of 30 FPS). In this case, the m (medium) model’s

has a low drop rate, and thus performs better than n (nano)

and xn (extra-nano). The red shaded region represents the time

when three streams are assigned to the deployment (arrival

rate of 90 FPS). Due to the m model being slow and dropping

more frames, n performs better in this region. The vertical blue

lines in Figures 11a and 11c indicate the timestamps when

the model switches occurred. Multiple blue lines near a load

change point denote the model switch for each of three module

instances of pose-estimation. As can be seen from the figure,

OVIDA’s dynamic switch is able to react to the changes in

arrival rate and switch to the better model accordingly. In terms

of median accuracy, dynamic model switching achieves a 15%
improvement over the default placement using only the m
model and a 10% improvement over the n model, the best
static choice in this case (see Figure 11b).

Figure 11c shows OVIDA in action when the frame content

changes. The green, red, and yellow regions represent in-focus

images with good illumination, dark images, and out-of-focus

images, respectively. Throughout this experiment, two streams

were assigned to the deployment (arrival rate of 60 FPS).

Similar to Figure 11a, vertical blue lines represent switch

points. OVIDA starts by switching to n model on orin nanos

and the m model on orin nx to adjust to the arrival rate of

60 FPS. In dark and out-of-focus parts of the stream, OVIDA

dynamically selects the appropriate model (md for dark and

mb for blur). In terms of median accuracy, dynamic model
switching in response to changes in frame content achieves
a 14% improvement over the default placement using the m
model and a 10% improvement over the mb model, the best
static choice in this case (see Figure 11d).

We thus conclude that OVIDA reacts appropriately to

workload changes by dynamically selecting the best model.

Note that the actual accuracy and gains are a function of the

application, models, frame content, and datasets.

C. End-to-end Evaluation of OVIDA

We now evaluate the benefits of combining OVIDA’s

placement and adaptive model selection against other place-

ment schemes. Similar to Section VII-B, we used the pose-

estimation pipeline. The input load traces are the same as those

employed in Figures 11a and 11c.

Figure 12 shows the relative FPS and accuracy achieved

by different policies for the above-mentioned load traces. The

‘Monolithic’, ‘MCAPP’, ‘HeteroEdge’, and ‘OVIDA Place’

policies shown only perform the initial placement using the

fixed m model. OVIDA Place with fixed m model achieved

throughput and accuracy gain of 17% and 11% over Mono-

lithic. Our end-to-end system, OVIDA with placement and

adaptive model selection (‘OVIDA Place+AMS’) achieves

significantly better performance, with throughput and accuracy

gains of 51% and 28%, respectively, over Monolithic. Com-
pared to OVIDA’s placement-only policy, OVIDA’s place-
ment+AMS thus obtains additional throughput and accuracy
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(a)

(b)

(c)

(d)

Fig. 11: (a) Selecting the appropriate models in response to changes in arrival rate. (b) Distribution of accuracy for AcRg

pipeline in (a), sampled every 30s. (c) Selecting the appropriate models in response to changes in frame content. (d) Distribution

of accuracy for AcRg in (c), sampled every 30s. Note that ‘AMS’ here refers to OVIDA with Adaptive Model Selection.

Fig. 12: End-to-end performance improvement afforded by

OVIDA with placement and model selection for the pose

estimation pipeline.

gains of 29% and 15%, respectively, highlighting the benefits
of combining model placement and dynamic model selection.

VIII. RELATED WORK

Table II presents a summary of the important features that

set OVIDA apart from existing work. In this section, we first

discuss prior works that focus on VA placement and then those

that tackle the VA model selection problem.

Module Placement: The placement problem in the VA

context refers to scheduling module instances on available

edge devices to maximize performance (throughput and ac-

curacy). Earlier works have explored different system designs

to address this problem. (i) Edge-cloud collaboration: Edge

devices are only either used for partial processing or for

filtering out frames before sending them to the cloud for

serving the remaining VA operations [5], [13], [40]. (ii)

Hierarchical processing: Video streams go through multiple

layers of processing infrastructure such as smart cameras,

nearby workstation cluster, and the cloud, each of them

hosting some VA function(s) [24]. (iii) Local edge: Completely

processing video streams at the edge using the devices in the

same local area network [11], [12], [41]–[43]. While many

prior works have explored several distinct combinations of

system designs, apart from Bahreini et al. [16] none have

considered the possibility of a distributed edge node system
hosting a multi-component VA pipeline. Further, prior works

often make certain limiting assumptions, such as assuming

(i) the availability of powerful workstations or server-class

machines with discrete GPUs to execute neural network-based

VA functions, and (ii) all edge nodes being present in a local

network connected with high-speed links.

Among the above works, we will now discuss those most

closely related to ours. Bahreini et al. [16] propose a generic

heuristic for placing multi-component pipelines on distributed

edge nodes. However, the heuristic is limited to placing only
one module per pipeline on a node, which can greatly limit

performance (as we show in Sections II and VII-A).

Hetero-Edge [11] presents a system that works with het-

erogeneous edge nodes and places the bottleneck module on a

single GPU, if that GPU’s usage is less than a threshold, before

moving to other alternative devices. If no GPU is available,

the other functions are parallelized over the CPU of the same

or a different node. This heuristic assumes only one module
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TABLE II: Feature comparison with most relevant works.

Features MCAPP
[16]

Distream
[12]

HeteroEdge
[11]

OVIDA
(Ours)

Distributed edge
nodes

Hosts pipelines
with multiple
DNN based modules

Adaptive load
balancing

Bottleneck detection
and scaling

Does not require a
workstation

Adaptive model
switching

instance for every service and further assumes that there is only

one module in the pipeline that requires GPU access. These

assumptions do not hold for many VA tasks (Section VII-A).

Distream [12] proposes (i) dynamic load balancing among

smart cameras, and (ii) finding an optimal point to slice the

pipeline such that the first half is placed on a smart camera

and the second on a powerful GPU-enabled workstation that

is assumed to be present in the same local area network.

However, Distream is quite rigid in its system design in that it

requires a powerful workstation and a high-speed connection

among all edge devices, which may not always be available

in an edge-only scenario.

Oakestra [15], a general-purpose orchestrator for edge de-

ployments, is a scheduler to place applications on suitable

edge nodes based on an extensive set of factors including

bandwidth, memory, GPU and CPU requirements, and network

latency from the source. However, unlike OVIDA, Oakestra

focuses on placing an entire, independent application on a

single node rather than appropriately distributing components

of an application pipeline that interact with each other.

Model Selection: Existing works have proposed strategies

for dynamic model selection with distinct system designs for

embedded devices [20], [44] and workstations on edge [14],

[17]–[19]. We next discuss the closely related works that

focus on model selection on heterogeneous distributed edge

computing deployments.

INFaaS [14] allows developers to register multiple models

per application; the submitted models are then hosted on

available edge devices. A user’s query to INFaaS contains the

image to process, the VA application to use, the maximum

allowed latency, and the minimum required accuracy. INFaas

then selects the best possible model-device combination to sat-

isfy the query. However, INFaaS was designed and evaluated

only on high-performing edge devices with enough memory

to load multiple models simultaneously.

Proteus [19] uses a similar system design to INFaaS, ex-

cept that it optimizes model-device selection for maximizing

accuracy as opposed to maintaining minimum accuracy and

maximum latency bounds. However, it also requires loading

multiple model variants on an edge device. Further, Proteus

models the optimization as a mixed integer linear program-

ming problem, whose solution is computationally intensive.

Proteus’ high memory and computing demands make it infea-

sible for edge deployments lacking powerful workstations.

LiteReconfig [44] proposes an approach to select an infer-

ence model based on light features (frame resolution, number

of objects detected) and heavy features (histogram of color,

histogram of oriented gradients, and feature extraction using a

DNN among others) to maximize accuracy for a minimum

latency constraint. It utilizes a custom-trained DNN model

to estimate the additional latency cost of using the heavy

features and determines whether to employ them. Based on

this estimated latency cost, it selects the inference model to

maintain both accuracy and latency within specified bounds.

RAVAS [18] proposes a low-overhead technique to share

the GPU among different models processing multiple video

streams. RAVAS uses reinforcement learning while receiving

periodic accuracy feedback from the “golden configuration”—

the best configuration of models. Both LiteReconfig and

RAVAS require all the available models to be pre-loaded into

memory for quick switching and comparison, which is not

feasible in edge deployments due to memory constraints. In

contrast, OVIDA only keeps one model in memory and makes

a swap when required.

IX. CONCLUSION

In this paper, we presented the design and evaluation of

OVIDA. To our knowledge, OVIDA is the first fully disag-

gregated video analytics design that has been evaluated on a

testbed of multiple embedded devices for three VA applica-

tions and three network topologies, under varying load condi-

tions. Our experiments show the OVIDA’s placement policy

can outperform all baseline techniques in terms of median

accuracy. Compared to the next-best policy, OVIDA achieves

accuracy gains of up to 7%, 27%, and 41% for single pipeline,

and multiple pipelines with and without common modules,

respectively, under various network and load conditions. We

also present an adaptive model selection technique that selects

the most appropriate model for a VA task and seamlessly

switches to it as needed, in response to changes in load.

OVIDA’s adaptive model selection can provide additional

accuracy gains of 15%. We believe that OVIDA’s design can

easily be scaled to efficiently support large VA systems on a

network of distributed edge nodes.
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