
EcoEdgeInfer: Dynamically Optimizing Latency 
and Sustainability for Inference 

on Edge Devices

Sri Pramodh Rachuri, Nazeer Shaik, Mehul Choksi, Anshul Gandhi
PACE Lab, Stony Brook University

1

srachuri@cs.stonybrook.edu
pramodh.rachuri.dev

mailto:srachuri@cs.stonybrook.edu
https://pramodh.rachuri.dev/


Motivation

2



Motivation

● Deployments are usually inference 

servers

○ Light weight – resources, energy, 

processing time, memory etc

○ More frequent executions 

○ Scale up in consumption

● User facing 

○ Latency sensitive

○ Varying arrival rate

ChatGPT consumes 6-10X more energy 
than a Google Search - Goldman Sachs
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https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf


Motivation

Edge for DNN inference

○ Commercial products, Prior works

○ Sits closer to the user

■ Low communication latency

○ Local processing

■ Added privacy

○ Possible remote locations

■ Limited energy supply

○ Resource contention

4



Problem Statement
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Jointly optimize energy consumption and latency
by tuning both hardware and software parameters
under varying request arrival conditions of
DNN inference workloads on Edge devices



Challenges
● Knobs having non-linear affect on 

energy
○ CPU Frequency

○ GPU Frequency

● Knobs having complex interactions 

with latency
○ Batch Size

● Varying request arrival patterns 

complicates futher
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[Source: Dutt et al., IGSC]

https://pramodh.rachuri.dev/files/pramodh_igsc23_wip.pdf


Challenges

● Too frequent arrivals ⇒ High load

○ Higher freqs for performance but energy 

inefficient

● Infrequent arrivals ⇒ Low load 

○ Lower freqs for energy saving but higher 

latencies

● Batch Size

○ High batch size - better energy 

efficiency and throughput

○ Wait for batching - Increase 

latency 

● Arrivals – Batch Size interaction

Example- Consider batch size of 11

○ 100ms arrival interval ⇒ 1.1 s 

○ 10ms arrival interval   ⇒ 110 ms

○ Bursts of 10 every 100 ms

⇒ 200 ms!!!

○ Batch size = 10   ⇒ 100 ms
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System Design
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System Design
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● Maintains a request queue

○ Store when busy

● Maintains a buffer of size = batch size

● Runs the DNN code provided by the developer

● Other signaling



System Design
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● Collects latency using timestamps from 

core inference system

○ All waiting times are also included

● Records energy consumed per batch 

○ Uses Nvidia APIs through sysfs, I2C



System Design
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● Homogenize latency and energy of group of 

requests into cost

E0 and L0 are measured when params are 

set to max



System Design
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● Optimizer takes cost & predicts a config

● Output of optimizer
● CPU - cpufrequtil

● GPU - NVIDIA’s devfreq framework

● Batchsize - Batching buffer



System Design
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Made to easily integrate with exiting PyTorch 

inference scripts using Python decorators

1. @eco_edge_infer.inference_method

2. def run_inference(input_data):

3. output_data = model(input_data)

4. output_handler(output_data)

5. run_inference(inference_request)
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Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local 

Search algorithm
○ Think of it as - gradient descent 

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood
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Optimization Algorithm: EcoGD
● Diagonal estimations

○ Data available - 6 Neighborhood

○ Diagonals  in CPU – GPU plane can 

be estimated

○ Diagonals in planes involving 

Batchsize cannot be estimated

● What is a better center?
○ Lowest cost among 6+4 neighbors

● History trimming
○ Adapt to changing arrival rates

○ Saves memory
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Evaluation Setup
● Nvidia Xavier NX

○ 25 CPU Frequencies

○ 15 GPU Frequencies

● Inference Workloads

○ Resnet 50, BERT-Tiny

○ Batch Sizes: 1-16

● Search Space

○ 25 X 15 X 16 = 6000

● 3 reruns

● Duration

○ Synthetic pattens – Till convergence

○ Traces – 3 hours
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Evaluation Setup
Request Arrival Pattern

● Fixed inter-arrival times between requests

○ 50 ms/90 ms

● Bursty arrivals

○ 10 requests arriving together 

every 500 ms/900 ms

● Bellevue Traffic Camera

○ Num of cars passing through

○ Proxy for Edge Traffic Video Analytics

● Twitter Stream Dataset

○ 1% sample of tweets in US East

○ Proxy for Edge content moderation

● Azure Functions Traces

○ Calls to azure serverless functions

○ Proxy to Serverless Edge Computing
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Evaluation Setup
Comparison Baselines

● Grid Search

○ Brute force method. Tries all configurations

● Linear Search

○ Sweeps each dimension one by one

○ Keeps sweeping forever

● Dynamic Voltage Frequency Scaling (DVFS)

○ CPU - schedutil

○ GPU - nvhost_podgov

○ Batch Size - 8, 16

● Bayesian Optimization

● Multi-Armed Bandit (MAB)

In detail explanations and exact hyperparameters can be found in the paper.
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Experimental Results: Fixed Loads
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BS 16 w.r.t BS 8

Lower energy

Higher latency, cost
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suboptimal



Bayesian
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EcoGD

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

~ Optimal and low 

overhead

EcoGD better than MAB



Experimental Results: Bursty Loads
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Experimental Results: Bursty Loads

25Metrics after convergence Metrics during convergence

(overhead)

EcoGD good in 

both convergence 

and overhead

Similar 

Observations



Experimental Results: Real-World Traces 
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Experimental Results: Real-World Traces 

26Metrics after convergence Tail metrics

MAB

Higher tail metrics



Experimental Results: Real-World Traces 

26Metrics after convergence Tail metrics

EcoGD

EcoGD gives the best 

performance



Experimental Results: Real-World Traces 

Time series of cost of algorithms while running 

Bellevue trace with Resnet50
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Experimental Results: Real-World Traces 

Time series of cost of algorithms while running 

Bellevue trace with Resnet50
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DVFS > MAB, EcoGD MAB, EcoGD have 

spikes

MAB has larger 

spikes

Bayesian – high and 

keeps jumping



Conclusion
● Trade-offs exist between energy consumption and latency

● Time varying workloads need dynamic and adaptive solutions

● EcoEdgeInfer - easy to use framework for tuning Frequencies and Batch Size

● EcoGD - algorithm to optimize for latency and energy

○ Mean cost reduction as much as 55%  (19% average reduction) 

○ Tail cost reduction as much as 90% (36% average reduction)

● Wide applicability with easy to use python APIs and opensourced code

● Future directions include
○ More devices with accelerators like TPUs and server grade hardware

○ Mobile devices with Tensor core – iPhones, Pixels etc

○ Custom objectives like SLOs, cost-effectiveness

○ Load balancing for heterogenous multi-device setup
28

https://github.com/PACELab/EcoEdgeInfer


Thanks for your 
attention
Any Questions?

Key Points-

● Trade-offs: energy/latency

● Time varying workloads

● EcoEdgeInfer framework

● EcoGD algorithm

● Wide Applicability

29GitHub Repo
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