
EcoEdgeInfer: Dynamically Optimizing Latency
and Sustainability for Inference

on Edge Devices

Sri Pramodh Rachuri, Nazeer Shaik, Mehul Choksi, Anshul Gandhi
PACE Lab, Stony Brook University

1

srachuri@cs.stonybrook.edu
pramodh.rachuri.dev

mailto:srachuri@cs.stonybrook.edu
https://pramodh.rachuri.dev/

Motivation

2

Motivation

● Deployments are usually inference

servers

○ Light weight – resources, energy,

processing time, memory etc

○ More frequent executions

○ Scale up in consumption

● User facing

○ Latency sensitive

○ Varying arrival rate

ChatGPT consumes 6-10X more energy
than a Google Search - Goldman Sachs

3

https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf

Motivation

Edge for DNN inference

○ Commercial products, Prior works

○ Sits closer to the user

■ Low communication latency

○ Local processing

■ Added privacy

○ Possible remote locations

■ Limited energy supply

○ Resource contention

4

Problem Statement

5

Jointly optimize energy consumption and latency
by tuning both hardware and software parameters
under varying request arrival conditions of
DNN inference workloads on Edge devices

Challenges
● Knobs having non-linear affect on

energy
○ CPU Frequency

○ GPU Frequency

● Knobs having complex interactions

with latency
○ Batch Size

● Varying request arrival patterns

complicates futher

6

[Source: Dutt et al., IGSC]

https://pramodh.rachuri.dev/files/pramodh_igsc23_wip.pdf

Challenges

● Too frequent arrivals ⇒ High load

○ Higher freqs for performance but energy

inefficient

● Infrequent arrivals ⇒ Low load

○ Lower freqs for energy saving but higher

latencies

● Batch Size

○ High batch size - better energy

efficiency and throughput

○ Wait for batching - Increase

latency

● Arrivals – Batch Size interaction

Example- Consider batch size of 11

○ 100ms arrival interval ⇒ 1.1 s

○ 10ms arrival interval ⇒ 110 ms

○ Bursts of 10 every 100 ms

⇒ 200 ms!!!

○ Batch size = 10 ⇒ 100 ms

7

Outline

1. Motivation

2. Problem Statement

3. Challenges

4. System Design

5. Optimization Algorithm

6. Experimental Setup

7. Experimental Results

8. Conclusion

8

System Design

9

System Design

10

System Design

11

● Maintains a request queue

○ Store when busy

● Maintains a buffer of size = batch size

● Runs the DNN code provided by the developer

● Other signaling

System Design

12

● Collects latency using timestamps from

core inference system

○ All waiting times are also included

● Records energy consumed per batch

○ Uses Nvidia APIs through sysfs, I2C

System Design

13

● Homogenize latency and energy of group of

requests into cost

E0 and L0 are measured when params are

set to max

System Design

14

● Optimizer takes cost & predicts a config

● Output of optimizer
● CPU - cpufrequtil

● GPU - NVIDIA’s devfreq framework

● Batchsize - Batching buffer

System Design

15

Made to easily integrate with exiting PyTorch

inference scripts using Python decorators

1. @eco_edge_infer.inference_method

2. def run_inference(input_data):

3. output_data = model(input_data)

4. output_handler(output_data)

5. run_inference(inference_request)

Outline

1. Motivation

2. Problem Statement

3. Challenges

4. System Design

5. Optimization Algorithm

6. Experimental Setup

7. Experimental Results

8. Conclusion

16

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Similar to Hill Climbing Local

Search algorithm
○ Think of it as - gradient descent

but only direction

● Cost is the objective function

● At every optimizer step, it either-
○ Explores 3D neighborhood

■ Only 6-neighborhood

○ Jumps to a better center

■ Loop detection

■ More loops than threshold

⇒ Jump outside 6-nbhrhood

17CPU Frequency

G
P

U
 F

re
q

u
e

n
cy

Optimization Algorithm: EcoGD
● Diagonal estimations

○ Data available - 6 Neighborhood

○ Diagonals in CPU – GPU plane can

be estimated

○ Diagonals in planes involving

Batchsize cannot be estimated

● What is a better center?
○ Lowest cost among 6+4 neighbors

● History trimming
○ Adapt to changing arrival rates

○ Saves memory

18

B
a

tc
h

 S
iz

e

Measured

Estimated

Ignored

Outline

1. Motivation

2. Problem Statement

3. Challenges

4. System Design

5. Optimization Algorithm

6. Experimental Setup

7. Experimental Results

8. Conclusion

19

Evaluation Setup
● Nvidia Xavier NX

○ 25 CPU Frequencies

○ 15 GPU Frequencies

● Inference Workloads

○ Resnet 50, BERT-Tiny

○ Batch Sizes: 1-16

● Search Space

○ 25 X 15 X 16 = 6000

● 3 reruns

● Duration

○ Synthetic pattens – Till convergence

○ Traces – 3 hours

20

Evaluation Setup
Request Arrival Pattern

● Fixed inter-arrival times between requests

○ 50 ms/90 ms

● Bursty arrivals

○ 10 requests arriving together

every 500 ms/900 ms

● Bellevue Traffic Camera

○ Num of cars passing through

○ Proxy for Edge Traffic Video Analytics

● Twitter Stream Dataset

○ 1% sample of tweets in US East

○ Proxy for Edge content moderation

● Azure Functions Traces

○ Calls to azure serverless functions

○ Proxy to Serverless Edge Computing

21

Evaluation Setup
Comparison Baselines

● Grid Search

○ Brute force method. Tries all configurations

● Linear Search

○ Sweeps each dimension one by one

○ Keeps sweeping forever

● Dynamic Voltage Frequency Scaling (DVFS)

○ CPU - schedutil

○ GPU - nvhost_podgov

○ Batch Size - 8, 16

● Bayesian Optimization

● Multi-Armed Bandit (MAB)

In detail explanations and exact hyperparameters can be found in the paper.
22

Outline

1. Motivation

2. Problem Statement

3. Challenges

4. System Design

5. Optimization Algorithm

6. Experimental Setup

7. Experimental Results

8. Conclusion

23

Experimental Results: Fixed Loads

24

Experimental Results: Fixed Loads

24Metrics after convergence

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

Optimal
High

overhead

Grid

Search

Linear

Search

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

Low overhead

but suboptimal

Linear

Search

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

Low overhead

but suboptimal

DVFS

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

BS 16 w.r.t BS 8

Lower energy

Higher latency, cost

DVFS

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

BS 16 w.r.t BS 8

Lower energy

Higher latency, cost

Both BS 8, 16

suboptimal

Bayesian

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

High

overhead~Optimal

MAB

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

High

variance

~Optimal

EcoGD

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

~ Optimal and low

overhead

EcoGD

Experimental Results: Fixed Loads

24Metrics after convergence Metrics during convergence

(overhead)

~ Optimal and low

overhead

EcoGD better than MAB

Experimental Results: Bursty Loads

25Metrics after convergence Metrics during convergence

(overhead)

Experimental Results: Bursty Loads

25Metrics after convergence Metrics during convergence

(overhead)

Similar

Observations

Experimental Results: Bursty Loads

25Metrics after convergence Metrics during convergence

(overhead)

EcoGD good in

both convergence

and overhead

Similar

Observations

Experimental Results: Real-World Traces

26Metrics after convergence Tail metrics

Experimental Results: Real-World Traces

26Metrics after convergence Tail metrics

Bayesian

Not Optimal

Experimental Results: Real-World Traces

26Metrics after convergence Tail metrics

MAB

Higher tail metrics

Experimental Results: Real-World Traces

26Metrics after convergence Tail metrics

EcoGD

EcoGD gives the best

performance

Experimental Results: Real-World Traces

Time series of cost of algorithms while running

Bellevue trace with Resnet50

27

Experimental Results: Real-World Traces

Time series of cost of algorithms while running

Bellevue trace with Resnet50

27

DVFS > MAB, EcoGD

Experimental Results: Real-World Traces

Time series of cost of algorithms while running

Bellevue trace with Resnet50

27

DVFS > MAB, EcoGD

Bayesian – high and

keeps jumping

Experimental Results: Real-World Traces

Time series of cost of algorithms while running

Bellevue trace with Resnet50

27

DVFS > MAB, EcoGD MAB, EcoGD have

spikes

Bayesian – high and

keeps jumping

Experimental Results: Real-World Traces

Time series of cost of algorithms while running

Bellevue trace with Resnet50

27

DVFS > MAB, EcoGD MAB, EcoGD have

spikes

MAB has larger

spikes

Bayesian – high and

keeps jumping

Conclusion
● Trade-offs exist between energy consumption and latency

● Time varying workloads need dynamic and adaptive solutions

● EcoEdgeInfer - easy to use framework for tuning Frequencies and Batch Size

● EcoGD - algorithm to optimize for latency and energy

○ Mean cost reduction as much as 55% (19% average reduction)

○ Tail cost reduction as much as 90% (36% average reduction)

● Wide applicability with easy to use python APIs and opensourced code

● Future directions include
○ More devices with accelerators like TPUs and server grade hardware

○ Mobile devices with Tensor core – iPhones, Pixels etc

○ Custom objectives like SLOs, cost-effectiveness

○ Load balancing for heterogenous multi-device setup
28

https://github.com/PACELab/EcoEdgeInfer

Thanks for your
attention
Any Questions?

Key Points-

● Trade-offs: energy/latency

● Time varying workloads

● EcoEdgeInfer framework

● EcoGD algorithm

● Wide Applicability

29GitHub Repo

	Slide 1: EcoEdgeInfer: Dynamically Optimizing Latency and Sustainability for Inference on Edge Devices Sri Pramodh Rachuri, Nazeer Shaik, Mehul Choksi, Anshul Gandhi PACE Lab, Stony Brook University
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Problem Statement
	Slide 6: Challenges
	Slide 7: Challenges
	Slide 8: Outline
	Slide 9: System Design
	Slide 10: System Design
	Slide 11: System Design
	Slide 12: System Design
	Slide 13: System Design
	Slide 14: System Design
	Slide 15: System Design
	Slide 16: Outline
	Slide 17: Optimization Algorithm: EcoGD
	Slide 18: Optimization Algorithm: EcoGD
	Slide 19: Optimization Algorithm: EcoGD
	Slide 20: Optimization Algorithm: EcoGD
	Slide 21: Optimization Algorithm: EcoGD
	Slide 22: Optimization Algorithm: EcoGD
	Slide 23: Optimization Algorithm: EcoGD
	Slide 24: Optimization Algorithm: EcoGD
	Slide 25: Optimization Algorithm: EcoGD
	Slide 26: Optimization Algorithm: EcoGD
	Slide 27: Optimization Algorithm: EcoGD
	Slide 28: Optimization Algorithm: EcoGD
	Slide 29: Outline
	Slide 30: Evaluation Setup
	Slide 31: Evaluation Setup
	Slide 32: Evaluation Setup
	Slide 33: Outline
	Slide 34: Experimental Results: Fixed Loads
	Slide 35: Experimental Results: Fixed Loads
	Slide 36: Experimental Results: Fixed Loads
	Slide 37: Experimental Results: Fixed Loads
	Slide 38: Experimental Results: Fixed Loads
	Slide 39: Experimental Results: Fixed Loads
	Slide 40: Experimental Results: Fixed Loads
	Slide 41: Experimental Results: Fixed Loads
	Slide 42: Experimental Results: Fixed Loads
	Slide 43: Experimental Results: Fixed Loads
	Slide 44: Experimental Results: Fixed Loads
	Slide 45: Experimental Results: Fixed Loads
	Slide 46: Experimental Results: Bursty Loads
	Slide 47: Experimental Results: Bursty Loads
	Slide 48: Experimental Results: Bursty Loads
	Slide 49: Experimental Results: Real-World Traces
	Slide 50: Experimental Results: Real-World Traces
	Slide 51: Experimental Results: Real-World Traces
	Slide 52: Experimental Results: Real-World Traces
	Slide 53: Experimental Results: Real-World Traces
	Slide 54: Experimental Results: Real-World Traces
	Slide 55: Experimental Results: Real-World Traces
	Slide 56: Experimental Results: Real-World Traces
	Slide 57: Experimental Results: Real-World Traces
	Slide 58: Conclusion
	Slide 59: Thanks for your attention

