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Motivation

Hey Google

SEC is a forum for top researchers, engineers, students,
entrepreneurs, and government officials come together under one roof
to discuss the opportunities and challenges that arise from

rethinking cloud computing architectures and embracing edge
computing.

SEC is a- for top researchers,_, students, entrepxeneursl
and government officials come together under one roof to discuss the
opportunities and challenges that arise from rethinking cloud computing
architectures and embracing edge computing.



Motivation

e Deployments are usually inference

servers
o Light weight - resources, energy,
processing time, memory etc
o More frequent executions

o Scale up in consumption

e User facing

o Latency sensitive

o Varying arrival rate

ChatGPT consumes 6-10X more energy
than a Google Search - Goldman Sachs

ChatGPT's Energy Consumption
for Responding to Prompts and Its Cost in the U.S.

Number Energy
Time Period of prompts Consumption Cost

Day 214,285,714

621,429 kWh $81,407

Week 1,500,000,000 4,350,000 kWh $569,850

Month 6,517,860,000 18,901,794 kWh $2,476,135

Year 78,214,350,000 226,821,615 kWh

$29713,632

Data sources: U.S. Energy Information Administration, Electric Power Research Institute (EPRI)

Calculations based on: 100 million weekly users, 15 weekly prompts per user, 00029 kWh of energy b BestBrokers
com

consumption per prompt, average U.S. commercial electricity rate of $0.131/kWh as of June 2024


https://www.goldmansachs.com/pdfs/insights/pages/generational-growth-ai-data-centers-and-the-coming-us-power-surge/report.pdf

Motivation

Small But Mighty!

Plug &Play | IP65 | 3GPUV;

Edge for DNN inference

o Commercial products, Prior works

Sits closer to the user

o

m Low communication latency

O

Local processing

m Added privacy

Possible remote locations

O

m Limited energy supply

Resource contention

O




Problem Statement

Jointly optimize energy consumption and latency
by tuning both hardware and software parameters
under varying request arrival conditions of

DNN inference workloads on Edge devices



Challenges

Knobs having non-linear affect on

energy
o CPU Frequency
o GPU Frequency

Knobs having complex interactions

with latency
o Batch Size

Varying request arrival patterns
complicates futher

@ Minima = 73.9 Joules
— DVFS

= 87.1 Joules
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[Source: Dutt et al., IGSC]


https://pramodh.rachuri.dev/files/pramodh_igsc23_wip.pdf

Challenges
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e Too frequent arrivals = High load
o Higher freqgs for performance but energy
inefficient
e Infrequent arrivals = Low load
o Lower fregs for energy saving but higher

latencies

e Batch Size
o High batch size - better energy
efficiency and throughput
o  Wait for batching - Increase
latency
e Arrivals - Batch Size interaction
Example- Consider batch size of 11
o 100ms arrival interval = 1.1 s
o 10ms arrival interval = 110 ms
o Bursts of 10 every 100 ms
= 200 msl!!!

o Batchsize=10 = 100 ms
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System Design

[
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System Design

Y R
Inference, Batching 8 Batch Output
®@ 60 @ 0O(» > : . >
Requests Request Queue Buffer 8 Proces.,smg :
: o ;
_ Core Inference System é g Y,
o Arrivaltime ' "Endtime "~ Y‘% e
Latency Monitor| | Energy Monitor |
Batch Size

Hardware

_ Frequencies
N

Optimizer

EcoEdgelnfer

10



System Design

Maintains a request queue

[ )
o Store when busy
e Maintains a buffer of size = batch size
e Runsthe DNN code provided by the developer
e Other signaling
[
( v o B
Inference Batching .| Batch Output “
Requests Ig)equ?st Q®ueue® O Buffer 8 | Processing =
X : Core Inference System g %’ /
" Ariivaitime JEndiime vg;—:;
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System Design

Collects latency using timestamps from
core inference system

o All waiting times are also included
Records energy consumed per batch

o Uses Nvidia APIs through sysfs, 12C

Core Inference System -

rt/Stog
Signaling
L

Arrival time !
e y
(

Y Y- B\
‘ |Latency Monitor“Energy Monitor| ‘

m
3
o
=
o

Sta

12



System Design

Homogenize latency and energy of group of
requests into cost
1/ F L
Cost = 5 (Eo + L_o>
E, and L, are measured when params are
set to max

Core Inference System -

Arrival t[me ! ' End time
/
(

Y VY -
‘ |Latency Monitor“Energy Monitor| ‘

St

rt/Stog
Signaling
g
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System Design

e Optimizer takes cost & predicts a config
e Output of optimizer

e (CPU - cpufrequitil

® GPU - NVIDIA's devfreq framework

® Batchsize - Batching buffer

[
L4

Batching
)) Buffer ‘g

---'-";1_-,- Y ST e va) uJ —

' Latency Monitor| | Energy Monitorl

_ Frequencies Batch Size

Optimizer

A

Hardware

EcoEdgelnfer




System Design

Made to easily integrate with exiting PyTorch
inference scripts using Python decorators

g w N

@eco_edge_infer.inference_ method

def run inference (input data):
output data = model (input data)
output handler (output data)

run_inference (inference request)

8 | Batch
8 | Processing |

15
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Optimization Algorithm: EcoGD

e Similar to Hill Climbing Local

Search algorithm
o Think of it as - gradient descent
but only direction
e C(Costis the objective function

e At every optimizer step, it either-
o Explores 3D neighborhood
m  Only 6-neighborhood
o Jumps to a better center
m Loop detection
m  More loops than threshold
= Jump outside 6-nbhrhood

GPU Frequency

»
»

CPU Frequency 17
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Optimization Algorithm: EcoGD

e Similar to Hill Climbing Local

Search algorithm
o Think of it as - gradient descent

but only direction ?
e C(Costis the objective function 1 g
e Atevery optimizer step, it either- | 3
o Explores 3D neighborhood "DL
m Only 6-neighborhood N &5

o Jumps to a better center N\

m Loop detection
m  More loops than threshold
= Jump outside 6-nbhrhood

»
»

CPU Frequency 17




Optimization Algorithm: EcoGD

e Diagonal estimations
o Data available - 6 Neighborhood
o Diagonals in CPU - GPU plane can
be estimated
o Diagonals in planes involving
Batchsize cannot be estimated

e Whatis a better center?
o Lowest cost among 6+4 neighbors

e History trimming
o Adapt to changing arrival rates
o Saves memory

B Measured
B Estimated
Ignored

Batch Size

18
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Evaluation Setup

Nvidia Xavier NX
o 25 CPU Frequencies
o 15 GPU Frequencies
e Inference Workloads
o Resnet 50, BERT-Tiny
o Batch Sizes: 1-16
e Search Space
o 25X15X16=6000

e 3reruns

e Duration
o Synthetic pattens - Till convergence
o Traces -3 hours

TECHNICAL SPECIFICATIONS OF NVIDIA XAVIER NX

Specification Value
CPU 6-core Nvidia Carmel
CPU Freq. range 115 MHz - 1.9 GHz; 25 steps of 77 MHz
GPU NVIDIA Volta
GPU Cores 384 CUDA Cores + 48 Tensor Cores
GPU Freq. range 114 MHz — 1.1 GHz; 15 steps of 90 MHz
Memory 8 GB LPDDR4x
Throughput 21 TOPs
Default Power Modes 10W, 15W, 20W
Jetpack version 5.1.3 [LAT v35.5.0]
Framework PyTorch 2.1.0

Operating Sys. & Libraries

Ubuntu 20.04.6; CUDA 11.4 + cuDNN 8.6

20



Evaluation Setup

Request Arrival Pattern
e Fixed inter-arrival times between requests
o 50 ms/90 ms
e Bursty arrivals
o 10 requests arriving together
every 500 ms/900 ms
e Bellevue Traffic Camera
o Num of cars passing through
o Proxy for Edge Traffic Video Analytics
e Twitter Stream Dataset
o 1% sample of tweets in US East
o Proxy for Edge content moderation
e Azure Functions Traces
o Calls to azure serverless functions
o Proxy to Serverless Edge Computing

o
)

T 0.6 1

m
=
Q

=
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0.8 1
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0.0 1

—-= Azure . ™\ AR
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Time (hours)
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Evaluation Setup

Comparison Baselines

e Grid Search
o Brute force method. Tries all configurations

e Linear Search
o Sweeps each dimension one by one
o Keeps sweeping forever

e Dynamic Voltage Frequency Scaling (DVFS)
o CPU - schedutil
o GPU - nvhost_podgov
o Batch Size -8, 16

e Bayesian Optimization

e Multi-Armed Bandit (MAB)

In detail explanations and exact hyperparameters can be found in the paper.

22
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Experimental Results: Fixed Loads
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Experimental Results: Fixed Loads
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Experimental Results: Fixed Loads
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Experimental Results: Fixed Loads
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Experimental Results: Fixed Loads
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Experimental Results: Fixed Loads
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Experimental Results: Fixed Loads
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Experimental Results: Fixed Loads
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Experimental Results: Bursty Loads
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Experimental Results: Real-World Traces
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Conclusion

Trade-offs exist between energy consumption and latency
Time varying workloads need dynamic and adaptive solutions
EcoEdgelnfer - easy to use framework for tuning Frequencies and Batch Size

EcoGD - algorithm to optimize for latency and energy
o Mean cost reduction as much as 55% (19% average reduction)
o Tail cost reduction as much as 90% (36% average reduction)

Wide applicability with easy to use python APIs and opensourced code

Future directions include
o More devices with accelerators like TPUs and server grade hardware
o Mobile devices with Tensor core - iPhones, Pixels etc
o Custom objectives like SLOs, cost-effectiveness
o Load balancing for heterogenous multi-device setup
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https://github.com/PACELab/EcoEdgeInfer

%

Key Points-

Trade-offs: energy/latency
Time varying workloads
EcoEdgelnfer framework
EcoGD algorithm

Wide Applicability
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